SEARCH

SEARCH BY CITATION

References

  • Allègre, C. J., and D. L. Turcotte (1986), Implications of a two-component marble-cake mantle, Nature, 323, 123127.
  • Batiza, R., and D. Vanko (1984), Petrology of young Pacific seamounts, J. Geophys. Res., 89, 12351260.
  • Benton, L. D. (1997), Origin and evolution of serpentine seamount fluids, Mariana and Izu-Bonin forearcs: Implications for the recycling of subducted material, Ph.D. dissertation, Univ. of Tulsa, Tulsa, Okla.
  • Benton, L. D., and F. Tera (2000), Lithium isotope systematics of the Marianas revisited, Goldschmidt J. Conf. Abstr., 5, 210.
  • Benton, L. D., J. G. Ryan, and F. Tera (2001), Boron isotope systematics of slab fluids as inferred from a serpentinite seamount, Mariana forearc, Earth Planet. Sci. Lett., 187, 273282.
  • Brenan, J. M., E. Neroda, C. C. Lindstrom, H. F. Shaw, F. J. Ryerson, and D. L. Phinney (1998a), Behaviour of boron, beryllium and lithium during melting and crystallization: Constraints from mineral-melt partitioning experiments, Geochim. Cosmochim. Acta, 62, 21292141.
  • Brenan, J. M., F. J. Ryerson, and H. F. Shaw (1998b), The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: Experiments and models, Geochim. Cosmochim. Acta, 62, 33373347.
  • Chan, L.-H., and J. M. Edmond (1988), Variation of lithium isotope composition in the marine environment: A preliminary report, Geochim. Cosmochim. Acta, 52, 17111717.
  • Chan, L.-H., J. M. Edmond, G. Thompson, and K. Gillis (1992), Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in the oceans, Earth Planet. Sci. Lett., 108, 151160.
  • Chan, L.-H., J. M. Gieskes, C.-F. You, and J. M. Edmond (1994), Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California, Geochim. Cosmochim. Acta, 58, 44434454.
  • Chan, L.-H., W. P. Leeman, and C.-F. You (1999), Lithium isotopic composition of Central American volcanic arc lavas: Implications for modification of the sub-arc mantle by slab-derived fluids, Chem. Geol., 160, 255280.
  • Chan, L.-H., W. P. Leeman, and C.-F. You (2001), Lithium isotopic composition of Central American volcanic arc lavas: Implications for modification of the sub-arc mantle by slab-derived fluids: Correction, Chem. Geol., 182, 293300.
  • Class, C., D. M. Miller, S. L. Goldstein, and C. H. Langmuir (2000), Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc, Geochem. Geophys. Geosyst., 1, Paper number 1999GC000010.
  • Decitre, S., E. Deloule, L. Reisberg, R. James, P. Agrinier, and C. Mével (2002), Behavior of Li and its isotopes during serpentinization of oceanic peridotites, Geochem. Geophys. Geosyst., 3(1), 1007, doi:10.1029/2001GC000178.
  • Defant, M. J., L. F. Clark, R. H. Stewart, M. S. Drummond, J. Z. de Boer, R. C. Maury, H. Bellon, T. E. Jackson, and J. F. Restrepo (1991), Andesite and dacite genesis via contrasting processes: The geology and geochemistry of El Valle Volcano, Panama, Contrib. Mineral. Petrol., 106, 309324.
  • Edwards, C. M. H., J. D. Morris, and M. F. Thirlwall (1993), Separating mantle from slab signatures in arc lavas using B/Be and radiogenic isotope systematics, Nature, 362, 530533.
  • Elliott, T., T. Plank, A. Zindler, W. White, and B. Bourdon (1997), Element transport from subducted slab to juvenile crust at the Mariana arc, J. Geophys. Res., 102, 14,99115,019.
  • Fryer, P. (1992), A synthesis of Leg 125 drilling of serpentine seamounts on the Mariana and Izu-Bonin forearcs, Proc. Ocean Drill. Program Sci. Results, 125, 593614.
  • Fryer, P. (2002), Recent studies of serpentinite occurrences in the oceans: Mantle-ocean interactions in the plate tectonic cycle, Chem. Erde, 62, 257302.
  • Fryer, P., and G. J. Fryer (1987), Origins of nonvolcanic seamounts in a forearc environment, in Seamounts, Islands, and Atolls, Geophys. Monogr. Ser., vol. 43, edited by B. H. Keating et al., pp. 6169, Washington, D. C.
  • Fryer, P., E. L. Ambos, and D. M. Hussong (1985), Origin and emplacement of Mariana forearc seamounts, Geology, 13, 774777.
  • Fryer, P., K. L. Saboda, L. B. Johnson, M. E. Mackay, G. F. Moore, and P. Stoffers (1990), Conical Seamount: SeaMARK II, Alvin submersible, and seismic reflection studies, Proc. Ocean Drill. Program Initial Rep., 125, 6980.
  • Guggino, S., I. P. Savov, and J. G. Ryan (2002), Light element systematics of metamorphic clasts from ODP Legs 125 and 195, South Chamorro and Conical Seamounts, Mariana forearc, Eos Trans. AGU, 83(19), Spring Meet. Suppl., Abstract V51A-08.
  • Haggerty, J. A. (1991), Evidence from fluid seeps atop serpentine seamounts in the Mariana forearc: Clues for emplacement of the seamounts and their relationship to forearc tectonics, Mar. Geol., 102, 293309.
  • Haggerty, J. A., and S. Chaudhuri (1992), Strontium isotopic composition of the interstitial waters from Leg 125: Mariana and Bonin forearcs, Proc. Ocean Drill. Program Sci. Results, 125, 397400.
  • Heling, D., and A. Schwarz (1992), Iowaite in serpentinite muds at Sites 778, 779, 780 and 784: A possible cause for the low chlorinity of pore waters, Proc. Ocean Drill. Program Sci. Results, 125, 313323.
  • Hussong, D. M., and P. Fryer (1985), Fore-arc tectonics in the Northern Mariana Arc, in Formation of Active Ocean Margins, edited by N. Nasu et al., pp. 273290, Terra Sci., Tokyo.
  • Ishikawa, T., and E. Nakamura (1994), Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes, Nature, 370, 205208.
  • Kepezhinskas, P., and M. J. Defant (1996), Contrasting styles of mantle metasomatism above subduction zones: Constraints from ultramafic xenoliths, in Kamchatka, in Subduction: Top to Bottom, Geophys. Monogr. Ser., vol. 96, edited by G. E. Bebout et al., pp. 307314, AGU, Washington, D. C.
  • Lagabrielle, Y., A.-M. Karpoff, and J. Cotton (1992), Mineralogical and geochemical analyses of sedimentary serpentinites from Conical Seamount (Hole 778A): Implications for the evolution of serpentine seamounts, Proc. Ocean Drill. Program Sci. Results, 125, 325342.
  • Lin, P. N., R. J. Stern, J. D. Morris, and S. H. Bloomer (1990), Nd- and Sr-isotopic compositions of lavas from the northern Mariana and southern Volcano arcs: Implications for the origin of island arc melts, Contrib. Mineral. Petrol., 105, 381392.
  • Maekawa, H., M. Shozui, T. Ishii, K. L. Saboda, and Y. Ogawa (1992), Metamorphic rocks from the serpentine seamounts in the Mariana and Izu-Ogasawara forearcs, Proc. Ocean Drill. Program Sci. Results, 125, 415430.
  • Maekawa, H., P. Fryer, and A. Ozaki (1995), Incipient blueschist-facies metamorphism in the active subduction zone beneath the Mariana forearc, in Active Margins and Marginal Basins of the Western Pacific, Geophys. Monogr. Ser., vol. 88, edited by B. Taylor, and J. Natland, pp. 281289, AGU, Washington, D. C.
  • Mattie, P. D., and J. G. Ryan (1994), Boron and alkaline element systematics in serpentinites from Holes 779A, 780C, and 784A, ODP Leg 125 describing fluid-mediated slab additions, Eos Trans. AGU, 75, Fall Meet. Suppl., F352.
  • Miller, D. M., C. H. Langmuir, and S. L. Goldstein (1994), Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents, Nature, 368, 514520.
  • Moriguti, T., and E. Nakamura (1998), Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones, Earth Planet. Sci. Lett., 163, 167174.
  • Morris, J. D., and J. G. Ryan (2003), Subduction zone processes and implications for changing composition of the upper and lower mantle, in Treatise on Geochemistry, edited by R. Carlson, chap. 2, pp. 451470, Elsevier Sci., New York.
  • Mottl, M. J. (1992), Pore waters from serpentine seamounts in the Mariana and Izu-Bonin Forearcs, Leg 125: Evidence for volatiles from the subducting slab, Proc. Ocean Drill. Program Sci. Results, 125, 373385.
  • Mottl, M. J., S. C. Komor, P. Fryer, and C. L. Moyer (2003), Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195, Geochem. Geophys. Geosyst., 4(11), 9009, doi:10.1029/2003GC000588.
  • Nabelek, P. I. (1987), General equations for modeling fluid/rock interaction using trace elements and isotopes, Geochim. Cosmochim. Acta, 51, 17651769.
  • Nishio, Y., S. Nakai, J. Yamamoto, H. Sumino, T. Matsumoto, V. S. Prikhod'ko, and S. Arai (2004), Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: Implications for EM1 origin, Earth Planet. Sci. Lett., 217, 245261.
  • Pearce, J. A., and D. W. Peate (1995), Tectonic implications of the composition of volcanic arc magmas, Annu. Rev. Earth Planet. Sci., 23, 251285.
  • Phipps Morgan, J., and W. J. Morgan (1999), Two-stage melting and the geochemical evolution of the mantle: A recipe for mantle plum-pudding, Earth Planet. Sci. Lett., 170, 215239.
  • Plank, T., and C. H. Langmuir (1993), Tracing trace element from sediment input to volcanic output at subduction zones, Nature, 362, 739742.
  • Reisberg, L., and A. Zindler (1986), Extreme isotopic variations in the upper mantle: Evidence from Ronda, Earth Planet. Sci. Lett., 81, 2945.
  • Reisberg, L., A. Zindler, and E. Jagoutz (1989), Further Sr and Nd isotopic results from peridotites of the Ronda ultramafic complex, Earth Planet. Sci. Lett., 96, 161180.
  • Ryan, J. G., and C. H. Langmuir (1987), The systematics of lithium abundances in young volcanic rocks, Geochim. Cosmochim. Acta, 51, 17271741.
  • Saboda, K. L., P. Fryer, and H. Maekawa (1992), Metamorphism of ultramafic clasts from Conical Seamount: Sites 778, 779, and 780, Proc. Ocean Drill. Program Sci. Results, 125, 431443.
  • Savov, I. P. (2004), Petrology and geochemistry of subduction-related rocks from the Mariana arc-basin system, Ph.D. dissertation, 355 pp., Univ. of South Fla., Tampa.
  • Savov, I. P., J. G. Ryan, P. Mattie, and J. Schijf (2000), Fluid-mobile element systematics of ultramafic xenoliths from the Izu-Bonin-Mariana forearc: Implications for the chemical cycling in subduction zones, Eos Trans. AGU, 81(48), Fall Meet. Suppl., Abstract V21C-02.
  • Savov, I. P., J. G. Ryan, L. Chan, M. D'Antonio, M. Mottl, P. Fryer, and ODP Leg 195 Sci. Party (2002), Geochemistry of serpentinites from the S. Chamorro Seamount, ODP Leg 195, Site 1200, Mariana Forearc—Implications for recycling at subduction zones, Goldschmidt J. Conf. Abstr., 7, A670.
  • Scambelluri, M., O. Müntener, L. Ottolini, T. T. Pettke, and R. Vannucci (2002), The fate of B, Cl, and Li in the subducted oceanic mantle and in the antigorite breakdown fluids, Earth Planet. Sci. Lett., 204, 217234.
  • Seitz, H. M., and A. B. Woodland (2000), The distribution of lithium in peridotitic and pyroxenitic mantle lithologies: An indicator of magmatic and metasomatic processes, Chem. Geol., 166, 4764.
  • Seyfried, W. E.Jr., D. R. Janecky, and M. J. Mottl (1984), Alteration of the oceanic crust: Implications for the geochemical cycles of lithium and boron, Geochim. Cosmochim. Acta, 48, 557569.
  • Seyfried, W. E.Jr., X. Chen, and L.-H. Chan (1998), Trace element mobility and lithium isotope exchange during hydrothermal alteration of seafloor weathered basalt: An experimental study at 350°C, 500 bars, Geochim. Cosmochim. Acta, 62, 949960.
  • Spivack, A. J., and J. M. Edmond (1987), Boron isotope exchange between seawater and the oceanic crust, Geochim. Cosmochim. Acta, 51, 10331043.
  • Straub, S. M., and G. D. Layne (2002), The systematics of boron isotopes in Izu arc front volcanic rocks, Earth Planet. Sci. Lett., 198, 2539.
  • Tatsumi, Y. (1986), Formation of the volcanic front in subduction zones, Geophys. Res. Lett., 13, 717720.
  • Tomascak, P. B., and C. H. Langmuir (1999), Lithium isotope variability in MORB, Eos Trans. AGU, 80(46), Fall Meet. Suppl., F1086F1087.
  • Tomascak, P. B., R. W. Carlson, and S. B. Shirey (1999a), Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS, Chem. Geol., 158, 145154.
  • Tomascak, P. B., F. Tera, R. T. Helz, and R. J. Walker (1999b), The absence of lithium isotope fractionation during basalt differentiation: New measurements by multi-collector sector ICP-MS, Geochim. Cosmochim. Acta, 63, 907910.
  • Tomascak, P. B., J. G. Ryan, and M. J. Defant (2000), Lithium isotope evidence for light element decoupling in the Panama sub-arc mantle, Geology, 28, 507510.
  • Tomascak, P. B., E. Widom, L. D. Benton, S. L. Goldstein, and J. G. Ryan (2002), The control of lithium budgets in island arcs, Earth Planet. Sci. Lett., 196, 227238.
  • Zack, T., P. B. Tomascak, R. L. Rudnick, C. Dalpe, and W. F. McDonough (2003), Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust, Earth Planet. Sci. Lett., 208, 279290.