SEARCH

SEARCH BY CITATION

References

  • Amend, J. P., and E. L. Shock (2001), Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria, FEMS Microbiol. Rev., 25, 175243.
  • Andrews, J. N., and G. B. Wilson (1987), The composition of dissolved gases in deep groundwaters and groundwater degassing, in Saline Water and Gases in Crystalline Rocks, edited by P. Fritz, and S. K. Frape, Geol. Assoc. Can. Spec. Pap., 33, 245252.
  • Apps, J. A., and P. C. van de Kamp (1994), Energy gases of abiogenic origin in the Earth's crust, in The Future of Energy Gases, edited by D. G. Howell, pp. 81132, U.S. Geol. Surv. Prof. Pap. 1570.
  • Bjerg, P. L., R. Jakobsen, H. Bay, M. Rasmussen, H.-J. Albrechtsen, and T. H. Christensen (1997), Effects of sampling well construction on H2 measurements made for characterization of redox conditions in a contaminated aquifer, Environ. Sci. Technol., 31, 30293031.
  • Bjornstad, B. N., J. P. McKinley, T. O. Stevens, S. A. Rawson, and J. K. Fredrickson (1994), Generation of hydrogen gas as a result of drilling within the saturated zone, Ground Water Monit. Rem., 14, 140147.
  • Bonin, A., and D. R. Boone (2004), Microbial isolations and characterizations from the deep terrestrial subsurface of the South African gold mines, paper presented at 104th General Meeting of the American Society of Microbiology, New Orleans, La.
  • Boone, D. R., R. L. Johnson, and Y. Liu (1989), Diffusion of the interspecies electron carrier H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake, Appl. Environ. Microbiol., 55, 17351741.
  • Chapelle, F. H., K. O'Neill, P. M. Bradley, B. A. Methe, S. A. Ciufo, L. L. Knobel, and D. R. Lovley (2002), A hydrogen-based subsurface microbial community dominated by methanogens, Nature, 415, 312315.
  • Cody, G. D., N. Boctor, J. Blank, J. Brandes, N. Boctor, T. Filley, R. Hazen, and H. J. Yoder (2000), Experimental investigations into dynamic organic reaction networks at high T and P in aqueous media, Orig. Life Evol. Biosphere, 30, 187.
  • Cook, A. P. (1998), The occurrence, emission and ignition of combustible strata gases in Witwatersrand gold mines and Bushveld platinum mines and means of ameliorating related ignition and explosion hazards. Part 1: Literature and technical review, GAP504 Proj. Rep., 88 pp., Itasca Africa (Pty) Ltd., Booysens, South Africa.
  • Coveney, R. M.Jr., E. D. Goebel, E. J. Zeller, and E. E. Angino (1987), Serpentinization and the origin of hydrogen gas in Kansas, AAPG Bull., 71, 3948.
  • Drennan, G. R., M. C. Boiron, M. Cathelineau, and L. J. Robb (1998), Characteristics of post-depositional fluids in the Witwatersrand Basin, Mineral. Petrol., 66, 82109.
  • Drobner, E., H. Huber, G. Wachtershauser, D. Rose, and K. O. Stetter (1990), Pyrite formation linked with hydrogen evolution under anaerobic conditions, Nature, 346, 742744.
  • Ferguson, J. (1973), The Pilanesberg alkaline province, Southern Africa, Trans. Geol. Soc. S. Afr., 76, 249270.
  • Harris, R. E., and S. M. Pimblott (2002), On 3H β- particle and 60Co γ irradiation of aqueous systems, Radiat. Res., 158, 493504.
  • Haveman, S. A., and K. Pedersen (1999), Distribution and metabolic diversity of microorganisms in deep igneous rock aquifers of Finland, Geomicrobiol. J., 16, 277294.
  • Hoehler, T. M., B. M. Bebout, and D. J. Des Marais (2002), The role of microbial mats in the production of reduced gases on the early Earth, Nature, 412, 324327.
  • Hoffmann, B. A. (1992), Isolated reduction phenomenon in red beds: A result of porewater radiolysis, in Water-Rock Interaction, edited by Y. K. Kharaka, and A. S. Maest, pp. 503506, A. A. Balkema, Brookfield, Vt.
  • Jaehne, B., G. Heinz, and W. Dietrich (1987), Measurement of the diffusion coefficients of sparingly soluble gases in water, J. Geophys. Res., 92, 10,76710,776.
  • Kita, I., S. Matsuo, and H. Wakita (1982), H2 generation by reaction between H2O and crushed rock: An experimental study on H2 degassing from the active fault zone, J. Geophys. Res., 87, 10,78910,795.
  • Lippmann, J., M. Stute, T. Torgersen, D. P. Moser, J. Hall, L. Lin, M. Borcsik, R. E. S. Bellamy, and T. C. Onstott (2003), Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa, Geochim. Cosmochim. Acta, 67, 45974619.
  • Lovley, D. R., and S. Goodwin (1988), Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reaction in aquatic sediments, Geochim. Cosmochim. Acta, 52, 29933003.
  • Marine, I. W. (1979), The use of naturally occurring Helium to estimate groundwater velocities for studies of geologic storage of radioactive waste, Water Resour. Res., 15, 11301136.
  • McKay, C. P. (2001), The deep biosphere; lessons for planetary exploration, in Subsurface Microbiology and Biogeochemistry, edited by J. K. Fredrickson, and M. Fletcher, pp. 315327, John Wiley, New York.
  • McMahon, P. B., and F. H. Chapelle (1991), Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry, Nature, 349, 233235.
  • Nicolaysen, L. O., R. J. Hart, and N. H. Gale (1981), The Vredefort radioelement profile extended to supracrustal strata at Carletonville, with implications for continental heat flow, J. Geophys. Res., 86, 10,65310,661.
  • Omar, G. I., T. C. Onstott, and J. Hoek (2003), The origin of deep subsurface microbial communities in the Witwatersrand basin, South Africa as deduced from apatite fission track analyses, Geofluids, 3, 6980.
  • Onstott, T. C., T. J. Phelps, F. S. Colwell, D. Ringeberg, D. C. White, and D. R. Boone (1998), Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville basin, Virginia, Geomicrobiol. J., 15, 353385.
  • Pedersen, K. (2001), Diversity and activity of microorganisms in deep igneous rock aquifers of the Fennoscandian shield, in Subsurface Microbiology and Biogeochemistry, edited by J. K. Fredrickson, and M. Fletcher, pp. 97139, John Wiley, New York.
  • Robb, L. J., and F. M. Meyer (1995), The Witwatersrand Basin, South Africa: Geological framework and mineralization processes, Ore Geol. Rev., 10, 6794.
  • Rushdi, A. I., and B. R. T. Simoneit (2001), Lipid formation by aqueous Fischer-Tropsch-type synthesis over a temperature range of 100 to 400°C, Orig. Life Evol. Biosphere, 31, 103118.
  • Savary, V., and M. Pagel (1997), The effects of water radiolysis on local redox conditions in the Oklo, Gabon, natural fission reactors 10 and 16, Geochim. Cosmochim. Acta, 61, 44794494.
  • Schweitzer, J., and A. Kroener (1985), Geochemistry and petrogenesis of early Proterozoic intracratonic volcanic rocks of the Ventersdorp Supergroup, South Africa, Chem. Geol., 51, 265288.
  • Seewald, J. S. (2001), Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: Constraints from mineral buffered laboratory experiments, Geochim. Cosmochim. Acta, 65, 16411664.
  • Sherwood Lollar, B., T. D. Westgate, J. A. Ward, G. F. Slater, and G. Lacrampe-Couloume (2002), Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs, Nature, 416, 522524.
  • Spinks, J. W. T., and R. J. Woods (1990), An Introduction to Radiation Chemistry, 574 pp, John Wiley, New York.
  • Stevens, T. O., and J. P. McKinley (1995), Lithoautotrophic microbial ecosystems in deep basalt aquifers, Science, 270, 450454.
  • Stevens, T. O., and J. P. McKinley (2000), Abiotic controls on H2 production from basalt-water reactions for aquifer biogeochemistry, Environ. Sci. Technol., 34, 826831.
  • Van Niekerk, C. B. (1962), The age of the Gemspost dyke from the Venterspost gold mine, Trans. Geol. Soc. S. Afr., 65, 105111.
  • Vovk, I. F. (1987), Radiolytic salt enrichment and brine in the crystalline basement of the east European platform, in Saline Water and Gases in Crystalline Rocks, edited by P. Fritz, and S. K. Frape, Geol. Assoc. Can. Spec. Pap., 33, 197210.
  • Ward, J. A., et al. (2004), Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: Implications for the deep biosphere, Geochim. Cosmochim. Acta, 68, 32393250.