[1] For the first time, solitary waves (SWs) have been observed within short large-amplitude magnetic structures (SLAMS) upstream of the Earth's quasi-parallel bow shock. The SWs often occur as bipolar pulses in the electric field data and move parallel to the background magnetic field at velocities of v = 400–1200 km/s. They have peak-to-peak amplitudes in the parallel electric field of up to E = 65 mV/m and parallel scale sizes of L ∼ 10 λD. The bipolar solitary waves exhibit negative potential structures of ∣Φ∣ = 0.4–2.2 V, i.e., eΦ/kTe ∼ 0.1. None of the theories commonly used to describe SWs adequately address these negative potential structures moving at velocities above the ion thermal speed in a weakly magnetized plasma.