SEARCH

SEARCH BY CITATION

References

  • Box, E. O. (1981), Macroclimate and Plant Forms: An Introduction to Rredictive Modeling in Phytogeography, 258 pp. and 25 maps, Dr. W. Junk, Norwell, Mass.
  • Breiman, L. (2001), Random forests, Machine Learning, 45, 532.
  • Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984), Classification and Regression Trees, Wadsworth, Belmont, Calif.
  • Brown, S. (2002), Measuring carbon in forests: Current status and future challenges, Environ. Pollut., 116, 363372.
  • Brown, S. L., and P. Schroeder (1999), Spatial distribution of biomass in forests of the eastern USA, For. Ecol. Manage., 123, 8190.
  • Cohen, W. B., and T. A. Spies (1992), Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery, Remote Sens. Environ., 41, 117.
  • Cohen, W. B., T. Maierpserger, S. Gower, and D. Turner (2003), An improved strategy for regression of biophysical variables and Landsat ETM+ data, Remote Sens. Environ., 84, 561571.
  • Davis, F. W., and S. Goetz (1990), Modeling vegetation pattern using digital terrain data, Landscape Ecol., 4, 6980.
  • Franklin, J. (1995), Predictive vegetation mapping: Geographic modelling of biospatial patterns in relation to environmental gradients, Prog. Phys. Geogr., 19, 474499.
  • Franklin, J. (1998), Predicting the distribution of shrub species in southern California from climate and terrain-derived variables, J. Vegetation Sci., 9, 733748.
  • Franklin, J., C. E. Woodcock, and R. Warbington (2000), Digital vegetation maps of forest lands in California: Integrating satellite imagery, GIS modeling, and field data in support of resource management, Photogramm. Eng. Remote Sens., 66, 12091217.
  • Frescino, T. S., T. C. Edwards, and M. G. Gretchen (2001), Modeling spatially explicit forest structural attributes using generalized additive models, J. Vegetation Sci., 12, 1526.
  • Gemmell, F. M. (1995), Effects of forest cover, terrain, and scale on timber volume estimation with thematic mapper data in a Rocky Mountain site, Remote Sens. Environ., 51, 291305.
  • Gray, J. T. (1982), Community structure and productivity in Ceanothus chaparral and coastal sage scrub of southern California, Ecol. Monogr., 52, 415435.
  • Guisan, A., T. C. Edwards, and T. Hastie (2002), Generalized linear and generalized additive models in studies of species distributions: Setting the scene, Ecol. Modell., 157, 89100.
  • Hastie, T. J., and R. J. Tibshirani (1990), Generalized Additive Models, Chapman and Hall, New York.
  • Holdridge, L. R. (1947), Determination of world plant formations from simple climatic data, Science, 105, 367368.
  • Houghton, R. (1992), Tropical forests and climate, in "Ecology, Conservation and Management of Southeast Asian Rainforests," edited by R. B. Primack, and T. E. Lovejoy, pp. 263290, Yale Univ. Press, New Haven, Conn.
  • Houghton, R. A., K. T. Lawrence, J. L. Hackler, and S. Brown (2001), The spatial distribution of forest biomass in the Brazilian Amazon: A comparison of estimates, Global Change Biol., 7, 731746.
  • Lefsky, M. A., D. Harding, W. Cohen, G. Parker, and H. Shugart (1999), Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA, Remote Sens. Environ., 67, 8398.
  • Myneni, R., J. Dong, C. Tucker, R. Kaufmann, P. Kauppi, J. Liski, L. Zhou, V. Alexeyev, and M. Hughes (2001), A large carbon sink in the woody biomass of northern forest, Proc. Natl. Acad. Sci. U. S. A., 98, 14,78414,789.
  • Puhr, C. B., and D. N. M. Donoghue (2000), Remote sensing of upland conifer plantations using Landsat TM data: A case study from Galloway, south-west Scotland, Int. J. Remote Sens., 21, 633646.
  • Ranson, K. J., G. Sun, R. Lang, N. Chauhan, R. Cacciola, and O. Kilic (1997), Mapping of boreal forest biomass from spaceborne synthetic aperture radar, J. Geophys. Res., 102, 29,59929,610.
  • Riggan, P. J., S. Goode, P. M. Jacks, and R. N. Lockwood (1988), Interaction of fire and community development in Chaparral of southern California, Ecol. Monogr., 58, 155176.
  • Schaaf, C. B., et al. (2002), First operational BRDF, albedo and nadir reflectance products from modis, Remote Sens. Environ., 83, 135148.
  • Schroeder, P., S. Brown, J. Mo, R. Birdsey, and C. Cieszewski (1997), Biomass estimation for temperate broadleaf forest of the United States using inventory data, Science, 43, 424434.
  • Thornton, P. E., S. Running, and M. White (1997), Generating surfaces of daily meteorological variables over large regions of complex terrain, J. Hydrol., 190, 214251.
  • Woodcock, C. E., et al. (1994), Mapping forest vegetation using Landsat TM imagery and a canopy reflectance model, Remote Sens. Environ., 50, 240254.