• Chédin, A., N. A. Scott, C. Wahiche, and P. Moulinier (1985), The improved initialisation inversion method: A high resolution physical method for temperature retrievals from satellite of the TIROS-N series, J. Clim. Appl. Meteorol., 24, 128143.
  • Chédin, A., A. Hollingsworth, N. A. Scottet al. (2002), Annual and seasonal variations of atmospheric CO2, N2O, and CO concentration retrieved from NOAA/TOVS satellite observations, Geophys. Res. Lett., 29(8), 1269, doi:10.1029/2001GL014082.
  • Chédin, A., S. Serrar, N. A. Scottet al. (2003), First global measurement of mid-tropospheric CO2 from NOAA polar satellites: Tropical zone, J. Geophys. Res., 108(D18), 4581, doi:10.1029/2003JD003439.
  • Chevallier, F., F. Chéruy, N. A. Scott, and A. Chédin (1998), A neural network approach for a fast and accurate computation of a longwave radiative budget, J. Appl. Meteorol., 37, 13851397.
  • Crevoisier, C., A. Chédin, and N. A. Scott (2003a), AIRS channel selection for CO2 and other trace-gas retrievals, Q. J. R. Meteorol. Soc., 129, 27192740.
  • Crevoisier, C., A. Chédin, S. Heillietteet al. (2003b), Mid-tropospheric CO2 retrieval in the tropical zone from AIRS observations, paper presented at the 13th International TOVS Study Conference, St. Adele, Canada, 29 Oct. – 4 Nov.
  • Goldberg, M., Y. Qu, L. McMillinet al. (2003), AIRS near-real-time products and algorithm in support of operational numerical weather prediction, IEEE Trans. Geosci. Remote Sens., 41(2), 379389.
  • Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change 2001: The Scientific Basis, edited by J. T. Houghton et al., Cambridge Univ. Press, New York.
  • Machida, T., K. Kita, Y. Kondoet al. (2003), Vertical and meridional distributions of the atmospheric CO2 mixing ratio between northern midlatitudes and southern subtropics, J. Geophys. Res., 108(D3), 8401, doi:10.1029/2001JD000910.
  • Matsueda, H., H. Inoue, and M. Ishii (2002), Aircraft observation of carbon dioxide at 8–13 km altitude over the western Pacific from 1993 to 1999, Tellus, Ser. B, 54, 121.
  • Rayner, P. J., and D. M. O'Brien (2001), The utility of remotely sensed CO2 concentration data in surface source inversions, Geophys. Res. Lett., 28, 175178.
  • Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986), Learning internal representations by error propagation, in Parallel Distributed Processing: Explorations in the Macrostructure of Cognition, vol. 1, edited by D. E. Rumelhart, and J. L. McClelland, pp. 318362, MIT Press, Cambridge, Mass.
  • Scott, N. A., and A. Chédin (1981), A fast line-by-line method for atmospheric absorption computations: The Automatized Atmospheric Absorption Atlas, J. Appl. Meteorol., 20, 556564.
  • Tans, P. P., I. Y. Fung, and T. Takahashi (1990), Observational constraints on the global atmospheric CO2 budget, Science, 247, 14311438.
  • Vay, S. A., B. E. Anderson, T. J. Conwayet al. (1999), Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific Basin, J. Geophys. Res., 104, 56635676.