Finite gyroradius theory of drift compressional modes



[1] A dispersion relation for ultralow frequency drift compressional modes in high pressure plasmas with finite gyroradius is derived from the linearized gyrokinetic-Maxwell equations with cold electrons and narrow eigenmode localization width along the field line. The dispersion relation demonstrates instability under two different conditions: 1) when the density gradient and proton temperature gradient are in opposite directions, or 2) when the magnetic guiding center drift is reversed with respect to the proton diamagnetic drift, i.e., drift reversal, which could occur during periods of strong magnetospheric disturbance. Furthermore, it is found that the most unstable modes have short azimuthal wavelengths comparable to the proton gyroradius.