SEARCH

SEARCH BY CITATION

References

  • Addadi, L., S. Raz, and S. Weiner (2003), Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization, Adv. Mater., 15, 959970.
  • Aizenberg, J., G. Lambert, S. Weiner, and L. Addadi (2002), Factors involved in the formation of amorphous calcium and crystalline carbonate carbonate: A study of an ascidian skeleton, J. Am. Chem. Soc., 124, 3239.
  • Barnes, D. J. (1970), Coral skeletons: An explanation of their growth and structure, Science, 170, 13051308.
  • Barnes, D. J. (1972), The structure and formation of growth-ridges in scleractinian coral skeletons, Proc. R. Soc. London, Ser. B, 182, 331350.
  • Berman, A., J. Hanson, L. Leiserowitz, T. F. Koetzle, S. Weiner, and L. Addadi (1993), Biological control of crystal texture: A widespread strategy for adapting crystal properties to function, Science, 259, 776779.
  • Bryan, W. H., and D. Hill (1941), Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals, Proc. R. Soc. Queensland, 52, 7891.
  • Clode, P. L., and A. T. Marshall (2002), Low temperature FESEM of the calcifying interface of a scleractinian coral, Tissue Cell, 34, 187198.
  • Cohen, A., and T. A. McConnaughey (2003), Geochemical perspectives on coral mineralization, in Biomineralization, edited by P. M. Dove, J. J. D. Yoreo, and S. Weiner, pp. 151187, Mineral. Soc. of Am., Washington, DC.
  • Constantz, B. R., and A. Meike (1988), Calcite centers of calcification in Mussa angulosa (Scleractinian), in Origin, Evolution and Modern Aspects of Biomineralization in Plants and Animals, edited by R. E. Crick, pp. 201208, Springer, New York.
  • Constantz, B. R., and S. Weiner (1988), Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons, J. Exper. Zool., 248, 253258.
  • Cuif, J.-P., and Y. Dauphin (1998), Microstructural and physio-chemical characterization of ‘centers of calcification’ in septa of some recent scleractinian corals, Paläontologische Z., 72, 257270.
  • Cuif, J.-P., Y. Dauphin, J. Doucet, M. Salome, and J. Susini (2003), XANES mapping of organic sulfate in three scleractinian coral skeletons, Geochim. Cosmochim. Acta, 67, 7583.
  • Cuif, J.-P., Y. Dauphin, P. Berthet, and J. Jegoudez (2004), Associated water and organic compounds in coral skeletons: Quantitative thermogravimetry coupled to infrared absorption spectrometry, Geochem. Geophys. Geosyst., 5, Q11011, doi:10.1029/2004GC000783.
  • Davis, K. J., P. M. Dove, and J. J. D. Yoreo (2000), The role of Mg+ as an impurity in calcite growth, Science, 290, 11341137.
  • Eggins, S. M., A. Sadekov, and P. D. Deckker (2004), Modulation and daily banding of Mg/Ca in Orbulina universa tests by symbiont photosynthesis and respiration: A complication for seawater thermometry, Earth Planet. Sci. Lett., 225, 411419.
  • Erez, J. (2003), The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies, in Biomineralization, edited by P. M. Dove, J. J. DeYoreo, and S. Weiner, pp. 115149, Mineral. Soc. of Am., Washington, DC.
  • Ferrier-Pages, C., F. Boisson, D. Allemand, and E. Tambutté (2002), Kinetics of strontium uptake in the scleractinian coral Stylophora pistillata, Mar. Ecol. Prog. Ser., 245, 93100.
  • Gladfelter, E. H. (1982), Skeletal development in Acropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite, Coral Reefs, 1, 4551.
  • Gotliv, B.-A., L. Addadi, and S. Weiner (2003), Mollusk shell acidic proteins: In search of individual functions, ChemBioChem, 4, 522529.
  • Hillion, F., B. Daigne, F. Girard, and G. Slodzian (1993), A new high performance instrument: The Cameca Nanosims 50, in Proceedings of the 9th SIMS Conference, edited by A. Benninghoven et al., pp. 254257, John Wiley and Sons, New York.
  • Johnston, I. S. (1980), The ultrastructure of skelatogenesis in hermatypic corals, Int. J. Cytol., 67, 171214.
  • Lowenstam, H. A., and S. Weiner (1989), On Biomineralization, 324 pp., Oxford Univ. Press, New York.
  • Mitshuguchi, T., E. Matsumoto, O. Abe, T. Uchida, and P. J. Isdale (1996), Mg/Ca thermometry in coral skeletons, Science, 274, 961963.
  • Mitterer, R. M. (1978), Amino acid composition and binding capability of the skeletal protein of corals, Bull. Mar. Sci., 28, 173180.
  • Orme, C. A., N. Noy, A. Wierzbicki, M. T. McBride, M. Grantham, H. H. Teng, P. M. Dove, and J. J. D. Yoreo (2001), Formation of chiral morphologies through selective binding of amino acids to calcite surface steps, Nature, 411, 775779.
  • Raz, S., S. Weiner, and L. Addadi (2000), Formation of high-magnesium calcites via an amorphous precusor phase: Possible biological implications, Adv. Mater., 12, 3842.
  • Risk, M. J., and T. H. Pearce (1992), Interference imaging of daily growth bands in massive corals, Nature, 358, 572573.
  • Rosenberg, G. D., W. W. Hughes, D. L. Parker, and B. D. Kay (2001), The geometry of bivalve shell chemistry and mantle metabolism, Am. Malacol. Bull., 16, 251261.
  • Tambutté, E., D. Allemand, E. Mueller, and J. Jaubert (1996), A compartmental approach to the mechanism of calcification in hermatypic corals, J. Exper. Biol., 199, 10291041.
  • Weiner, S., Y. Levi-Kalisman, and L. Addadi (2003), Biologically formed amorphous calcium carbonate, Connective Tissue Res., 44, 214218.
  • Wellington, G. M., R. B. Dunbar, and G. Merlen (1996), Calibration of stable oxygen isotope signals in corals, Paleoceanography, 11, 467480.
  • Young, S. D. (1971), Organic material from scleratinian coral skeletons. I. Variation in composition between several species, Comparative Biochem. Physiol., 40B, 113120.