Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry



[1] RADARSAT data from the 1997 Antarctic Mapping Mission are used interferometrically to solve for the 3-dimensional surface ice motion in the interior of the West Antarctic Ice Sheet (WAIS). An area of ∼125 km2 in a tributary of the Kamb Ice Stream slumped vertically downwards by up to ∼50 cm between September 26 and October 18, 1997. Areas in the Bindschadler Ice Stream also exhibited comparable upward and downward surface displacements. As the uplift and subsidence features correspond to sites at which the basal water apparently experiences a hydraulic potential well, we suggest transient movement of pockets of subglacial water as the most likely cause for the vertical surface displacements. These results, and related lidar observations, imply that imaging the change in ice surface elevation can help reveal the key role of water in the difficult-to-observe subglacial environment, and its important influence on ice dynamics.