SEARCH

SEARCH BY CITATION

References

  • Bard, Y. (1974), Nonlinear Parameter Estimation, chaps. 4–7, pp. 54216, Academic, San Diego, Calif.
  • Beck, C. (2001), On the small-scale statistics of Lagrangian turbulence, Phys. Lett. A, 287, 240.
  • Beck, C., B. G. Lewis, and H. L. Swinney (2001), Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow, Phys. Rev. E, 63, 035303(R).
  • Bruno, R., B. Bavassano, L. Bianchini, E. Pitropaolo, U. Villante, V. Carbone, and P. Veltri (1999), Magnetic Fields and Solar Processes: The 9th European Meeting on Solar Physics: 12–18 September 1999, Florence, Italy, Eur. Space Agency Spec. Publ., ESA SP-448, 1349.
  • Burlaga, L. F. (1991a), Intermittent turbulence in the solar wind, J. Geophys. Res., 96, 5847.
  • Burlaga, L. F. (1991b), Multifractal structure of speed fluctuations in recurrent streams at 1 AU and near 6 AU, Geophys. Res. Lett., 18, 1651.
  • Burlaga, L. F. (1992), Multifractal structure of the interplanetary magnetic field and plasma in recurrent streams at 1 AU, J. Geophys. Res., 97, 4283.
  • Burlaga, L. F. (1993), Intermittent turbulence in large-scale speed fluctuations at 1 AU near solar maximum, J. Geophys. Res., 98, 17,467.
  • Burlaga, L. F. (1995), Interplanetary Magnetohydrodynamics, Oxford Univ. Press, New York.
  • Burlaga, L. F., and M. A. Forman (2002), Large-scale speed fluctuations at 1 AU on scales from 1 hour to ≈1 year: 1999 and 1995, J. Geophys. Res., 107(A11), 1403, doi:10.1029/2002JA009271.
  • Burlaga, L. F., and A. F.-Viñas (2004), Multi-scale probability distributions of solar wind speed fluctuations at 1 AU described by a generalized Tsallis distribution, Geophys. Res. Lett., 31, L16807, doi:10.1029/2004GL020715.
  • Burlaga, L., and K. Ogilvie (1970a), Magnetic and thermal pressures in the solar wind, Solar Phys., 15, 61.
  • Burlaga, L., and K. Ogilvie (1970b), Heating of the solar wind, Astrophys. J., 159, 659.
  • Burlaga, L. F., W. H. Mish, and D. A. Roberts (1989), Large-scale fluctuations in the solar wind at 1 AU: 1978–1982, J. Geophys. Res., 94, 177.
  • Burlaga, L. F., C. Wang, J. D. Richardson, and N. F. Ness (2003), Evolution of the multiscale statistical properties of corotating streams from 1 to 95 AU, J. Geophys. Res., 108(A7), 1305, doi:10.1029/2003JA009841.
  • Carbone, V., and R. Bruno (1997), High-order velocity structure functions and anomalous scaling laws in the interplanetary space, Nuovo Cimento Soc. Ital. Fis. C, 20(6), 933.
  • Castaing, B., Y. Gagne, and E. J. Hopfinger (1990), Velocity probability density functions in high Reynolds number turbulence, Physica D, 46, 177.
  • Coleman, P. J.Jr. (1968), Turbulence, viscosity and dissipation in the solar wind plasma, Astrophys. J., 153, 371.
  • Forman, M. A., and L. F. Burlaga (2003), Exploring the Castaing distribution function to study intermittence in the solar wind at L1 in June 2000, AIP Conf. Proc., 679, 554.
  • Frisch, U. (1995), Turbulence: The Legacy of A. N. Kolmogorov, Cambridge Univ. Press, New York.
  • Hundhausen, A. J. (1972), Coronal Expansion and Solar Wind, Springer-Verlag, New York.
  • Hundhausen, A. J. (1977), An interplanetary view of coronal holes, in Coronal Holes and High Speed Wind Streams, edited by J. B. Zirker, pp. 225329, Colo. Assoc. Univ. Press, Boulder, Colo.
  • Kolmogorov, A. N. (1941), Local structure of turbulence in incompressible fluid, Dokl. Akad. Nauk SSSR, 30, 299.
  • Kolmogorov, A. N. (1962), A refinement of previous hypothesis concerning the local structure of turbulence in viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 13, 82.
  • Leubner, M. P. (2002), A nonextensive entropy approach to kappa-distributions, Astrophys. Space Sci., 282, 573.
  • Leubner, M. P. (2004), Core-halo distribution functions: A natural equilibrium state in generalized thermostatistics, Astrophys. J., 604, 469.
  • Levenberg, K. (1944), A method for the solution of certain problems in least squares, Q. Appl. Math., 2, 164.
  • Maksimovic, M., V. Pierrard, and P. Riley (1997), Ulysses electron distributions fitted with kappa functions, Geophys. Res. Lett., 24, 1151.
  • Mandelbrot, B. (1972), Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence, in Statistical Models and Turbulence, edited by M. Rosenblatt, and C. Van Atta, p. 333, Springer-Verlag, New York.
  • Mandelbrot, B. (1989), Multifractal measures, especially for the geophysicist, Pure Appl. Geophys., 131, 5.
  • Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11, 431.
  • Marsch, E., and S. Liu (1993), Structure functions and intermittency of velocity fluctuations in the inner solar wind, Ann. Geophys., 11, 227.
  • Marsch, E., and C. Y. Tu (1994), Non-Gaussian probability distributions of solar wind fluctuations, Ann. Geophys., 12, 1127.
  • Marsch, E., and C.-Y. Tu (1997), Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind, Nonlinear Proc. Geophys., 4, 101.
  • McComas, D. J., et al. (1998), Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev., 86, 563.
  • Neugebauer, M., and C. W. Snyder (1966), Mariner 2 observations of the solar wind 2: Average properties, J. Geophys. Res., 71, 4469.
  • Ogilvie, K. W., et al. (1995), SWE, A comprehensive plasma instrument for the WIND spacecraft, Space Sci. Rev., 71, 55.
  • Olbert, S. (1968), Summary of experimental results from M. I. T. detector on IMP-1, in Physics of the Magnetosphere, edited by R. L. Carovillano, J. F. McClay, and H. R. Radoski, pp. 641659, Springer-Verlag, New York.
  • Paladin, G., and A. Vulpiani (1987), Anomalous scaling laws in multifractal objects, Phys. Rep., 4, 147.
  • Sarabhai, V. (1963), Some consequences of non-uniformity of solar wind velocity, J. Geophys. Res., 68, 1555.
  • Scudder, J. D., and S. Olbert (1979), A theory of local and global processes which affect solar wind electrons: 1. The origin of typical 1 AU velocity distribution functions—steady state theory, J. Geophys. Res., 84, 2755.
  • Smith, C. W., J. L. L’Heureux, N. F. Ness, M. H. Acuna, L. F. Burlaga, and J. Scheifele (1998), The ACE magnetic field experiment, Space Sci. Rev., 86, 613.
  • Sorriso-Valvo, L., V. Carbone, P. Veltri, G. Consolini, and R. Bruno (1999), Intermittency in the solar wind turbulence through probability distribution functions of fluctuations, Geophys. Res. Lett., 26, 1801.
  • Tsallis, C. (1988), Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52, 479.
  • Tsallis, C. (2004), Nonextensive statistical mechanics: Construction and physical interpretation, in Nonextensive Entropy-Interdisciplinary Applications, edited by M. Gell-Mann, and C. Tsallis, pp. 154, Oxford Univ. Press, New York.
  • Tsallis, C., and E. Brigatti (2004), Nonextensive statistical mechanics: A brief introduction, Continuum Mech. Thermodyn., 16, 223.
  • Vasyliunas, V. M. (1968), A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3, J. Geophys. Res., 73, 2839.