SEARCH

SEARCH BY CITATION

References

  • Ackleson, S., W. M. Balch, and P. M. Holligan (1988), White waters of the Gulf of Maine, Oceanography, 1, 1822.
  • Ackleson, S., W. M. Balch, and P. M. Holligan (1994), Response of water-leaving radiance to particulate calcite and chlorophyll a concentrations: A model for Gulf of Maine coccolithophore blooms, J. Geophys. Res., 99, 74837499.
  • Archer, D. E. (1997), A data-driven model of the global calcite lysocline, Global Biogeochem. Cycles, 10, 511526.
  • Archer, D., and E. Maier-Reimer (1994), Effect of deep-sea sedimentary calcite on preservation on atmospheric CO2 concentration, Nature, 367, 260263.
  • Archer, D., H. Kheshgi, and E. Maier-Reimer (1998), Dynamics of fossil fuel CO2 neutralization by marine CaCO3, Global Biogeochem. Cycles, 12, 259276.
  • Armstrong, R. A., C. Lee, J. I. Hedges, S. Honjo, and S. G. Wakeham (2002), A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep Sea Res., Part II, 49, 219236.
  • Balch, W. (1991), Erratum, Limnol. Oceanogr, 36, 1462.
  • Balch, W. (2001), Validation of surface bio-optical properties in the Gulf of Maine as a means for improving satellite primary production estimates, in SIMBIOS Project 2000 Annual Report, edited by G. S. Fargion, and C. R. McClain, pp. 2633, NASA Goddard Space Flight Cent., Greenbelt, Md.
  • Balch, W. M. (2004), Re-evaluation of the physiological ecology of coccolithophores, in Coccolithophores: From Molecular Processes to Global Impact, edited by H. R. Thierstein, and J. R. Young, pp. 165190, Springer, New York.
  • Balch, W. M., and D. T. Drapeau (2004), Backscattering by coccolithophorids and coccoliths: Sample preparation, measurement and analysis protocols, in Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5: Biogeochemical and Bio-Optical Measurements and Data Analysis Protocols, edited by J. L. Mueller, G. S. Fargion, and C. R. McClain, pp. 2736, NASA Goddard Space Flight Space Cent., Greenbelt, Md.
  • Balch, W. M., and K. A. Kilpatrick (1996), Calcification rates in the equatorial Pacific along 140°W, Deep Sea Res., Part II, 43, 971993.
  • Balch, W. M., R. W. Eppley, M. R. Abbott, and F. M. H. Reid (1989), Bias in satellite-derived pigment measurements due to coccolithophores and dinoflagellates, J. Plankton Res., 11, 575581.
  • Balch, W. M., P. M. Holligan, S. G. Ackleson, and K. J. Voss (1991), Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine, Limnol. Oceanogr., 36, 629643.
  • Balch, W. M., P. M. Holligan, and K. A. Kilpatrick (1992), Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi, Cont. Shelf Res., 12, 13531374.
  • Balch, W. M., K. Kilpatrick, P. M. Holligan, D. Harbour, and E. Fernandez (1996a), The 1991 coccolithophore bloom in the central north Atlantic. II, Relating optics to coccolith concentration, Limnol. Oceanogr., 41, 16841696.
  • Balch, W. M., K. A. Kilpatrick, P. M. Holligan, and C. Trees (1996b), The 1991 coccolithophore bloom in the central north Atlantic. I. Optical properties and factors affecting their distribution, Limnol. Oceanogr., 41, 16691683.
  • Balch, W. M., D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz (1999), Optical backscattering by calcifying algae: Separating the contribution by particulate inorganic and organic carbon fractions, J. Geophys. Res., 104, 15411558.
  • Balch, W. M., D. Drapeau, and J. Fritz (2000), Monsoonal forcing of calcification in the Arabian Sea, Deep Sea Res., Part II, 47, 13011337.
  • Balch, W. M., D. Drapeau, J. Fritz, B. Bowler, and J. Nolan (2001), Optical backscattering in the Arabian Sea: Continuous underway measurements of particulate inorganic and organic carbon, Deep Sea Res., Part I, 48, 24232452.
  • Balch, W. M., D. T. Drapeau, B. C. Bowler, E. S. Booth, J. I. Goes, A. Ashe, and J. M. Frye (2004), A multi-year record of hydrographic and bio-optical properties in the Gulf of Maine: I. Spatial and temporal variability, Prog. Oceanogr., 63, 5798.
  • Bates, N. R., A. F. Michaels, and A. H. Knapp (1996), Alkalinity changes in the Sargasso Sea: Geochemical evidence of calcification? Mar. Chem., 51, 347358.
  • Berge, G. (1962), Discoloration of the sea due to Coccolithus huxleyi “bloom,”, Sarsia, 6, 2740.
  • Birkenes, E., and T. Braarud (1952), Phytoplankton in the Oslo fjord during a “Coccolithus huxleyi summer,”, Oslo I. Mat. Naturv. Kl., 2, 123.
  • Blackburn, S., and G. Cresswell (1993), A coccolithophorid bloom in Jervis Bay, Australia, Aust. J. Freshwater Res., 44, 253260.
  • Boyle, E. A. (1988), The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide, J. Geophys. Res., 93, 15,70115,714.
  • Broecker, W. S., and T.-H. Peng (1982), Tracers in the Sea, 660 pp., Lamont-Doherty Geol. Obs. Columbia Univ., Palisades, New York.
  • Broecker, W. S., and T.-H. Peng (1989), The cause of the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis, Global Biogeochem. Cycles, 3, 215239.
  • Broecker, W. S., and T. Takahashi (1977), Neutralization of fossil fuel CO2 by marine calcium carbonate, in The Fate of Fossil CO2in the Oceans, edited by N. R. Anderson, and A. Malahoff, pp. 213241, Springer, New York.
  • Broerse, A. T. C., T. Tyrrell, J. R. Young, A. J. Poulton, A. Merico, and W. M. Balch (2003), The cause of bright waters in the Bering Sea in winter, Cont. Shelf Res., 23, 15791596.
  • Brown, C. W., and J. A. Yoder (1994), Coccolithophorid blooms in the global ocean, J. Geophys. Res., 99, 74677482.
  • Brussaard, C. P. D., R. S. Kempers, A. J. Kop, R. Riegmen, and M. Heldal (1996), Virus-like particles in a summer bloom of Emiliania huxleyi in the North Sea, Aquat. Microbial Ecol., 10, 105113.
  • Brzezinski, M. A., D. M. Nelson, V. M. Franck, and D. E. Sigmon (2001), Silicon dynamics within an intense open-ocean diatom bloom in the Pacific sector of the Southern Ocean, Deep Sea Res., Part II, 48, 39974018.
  • Buitenhuis, E., J. van Bleijswijk, D. Bakker, and M. Veldhuis (1996), Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea, Mar. Ecol. Prog. Ser., 143, 271282.
  • Burkill, P. H., S. D. Archer, C. Robinson, P. D. Nightingale, S. B. Groom, G. A. Tarran, and M. V. Zubkov (2002), Dimethyl sulphide biogeochemistry within a coccolithophore bloom (DISCO): An overview, Deep Sea Res., Part II, 49, 28632885.
  • Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren (1987), Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655661.
  • Clark, D. K. (1981), Phytoplankton algorithms for the Nimbus-7 CZCS, in Oceanography From Space, edited by J. R. F. Gower, pp. 227237, Springer, New York.
  • Cokacar, E. A. (2001), Structure of Emiliania huxleyi blooms in the Black Sea surface waters as detected by SeaWIFS imagery, Geophys. Res. Lett., 28, 46074610.
  • Cullen, J. J. (1990), On models of growth and photosynthesis in phytoplankton, Deep Sea Res., Part A, 37, 667683.
  • Eppley, R. W., W. G. Harrison, S. Chisholm, and E. Stewart (1977), Particulate organic matter in surface waters off southern California and its relationship to phytoplankton, J. Mar. Res., 35, 671696.
  • Fagerbakke, K. M., M. Heldal, S. Norland, B. R. Heimdal, and H. Batvik (1994), Emiliania huxleyi: Chemical composition and size of coccoliths from enclosure experiments and a Norwegian fjord, Sarsia, 79, 349355.
  • Feely, R. A., C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and F. J. Millero (2004), Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science, 305, 362366.
  • Fernández, E., P. Boyd, P. M. Holligan, and D. S. Harbour (1993), Production of organic and inorganic carbon within a large scale coccolithophore bloom in the northeast Atlantic Ocean, Mar. Ecol. Prog. Ser., 97, 271285.
  • Francois, R., S. Honjo, R. Krishfield, and S. Manganini (2002), Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean, Global Biogeochem. Cycles, 16(4), 1087, doi:10.1029/2001GB001722.
  • Fukushima, H., and J. Ishizaka (1993), Special features and applications of CZCS data in Asian waters, in Ocean Colour: Theory and Applications in a Decade of CZCS Experience, edited by P. Schlittenhardt, and V. Barale, pp. 213236, Elsevier, New York.
  • Garcia-Soto, C., E. Fernandez, R. D. Pinigree, and D. S. Harbour (1995), Evolution and structure of a shelf coccolithophore bloom in the western English Channel, J. Plankton Res., 17, 20112036.
  • Gayoso, A. M. (1995), Bloom of Emiliania huxleyi (Prymnesiophyceae) in the western South Atlantic Ocean, J. Plankton Res., 17, 17171722.
  • Geider, R. J. (1987), Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton, New Phytol., 106, 134.
  • Gordon, H. R. (1997), Atmospheric correction of ocean color imagery in the Earth Observing System era, J. Geophys. Res., 102, 17,08117,106.
  • Gordon, H. R., and T. Du (2001), Light scattering by nonspherical particles: Application to coccoliths detached from Emiliania huxleyi, Limnol. Oceanogr., 46, 14381454.
  • Gordon, H. R., and W. R. McCluney (1975), Estimation of the depth of sunlight penetration in the sea for remote sensing, Appl. Opt., 14, 413416.
  • Gordon, H. R., and A. Y. Morel (1983), Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review, 114 pp., Springer, New York.
  • Gordon, H. R., and M. Wang (1994), Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm, Appl. Opt., 33, 443452.
  • Gordon, H. R., O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark (1988), A semi-analytic radiance model of ocean color, J. Geophys. Res., 93, 10,90910,924.
  • GREPMA (1981), Satellite (AVHRR/NOAA-9) and ship studies of a coccolithophorid bloom in the western English Channel, Mar. Nature, 1, 114.
  • Head, R. N., D. W. Crawford, J. Egge, D. Lesley, S. Kristiansen, E. Maranon, D. Pond, D. A. Purdie, and R. P. Harris (1998), The hydrography and biology of a bloom of the coccolithophorid Emiliania huxleyi in the northern North Sea, J. Sea Res., 39, 255266.
  • Holligan, P. M., M. Viollier, D. S. Harbout, P. Camus, and M. Champagne-Philippe (1983), Satellite and ship studies of coccolithophore production along a continental shelf edge, Nature, 304, 339342.
  • Holligan, P. M., et al. (1993), A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic, Global Biogeochem. Cycles, 7, 879900.
  • Iglesias-Rodrigues, D., R. Armstrong, R. Feely, R. Hood, and J. Kleypas (2001), SMP Workshop assesses role of calcification in ocean carbon cycle, U.S. JGOFS Newsl., 11(3), 910.
  • Kai, M., T. Hara, H. Aoyama, and N. Kuroda (1999), A massive coccolithophorid bloom observed in Mikawa Bay, Japan, J. Oceanogr., 55, 395406.
  • Keller, M. D., W. K. Bellows, and R. R. L. Guillard (1989), Dimethyl sulfide production in marine phytoplankton, in Biogenic Sulfur in the Environment, edited by E. S. Saltzman, and W. J. Cooper, pp. 167182, Am. Chem. Soc., Washington, D. C.
  • Keller, M. D., D. W. Townsend, S. G. Ackleson, P. M. Holligan, W. M. Balch, and P. A. Matrai (1992), Observations of coccolithophore blooms in the Gulf of Maine, in Gulf of Maine Scientific Workshop, edited by J. Wiggin, and C. Mooers, pp. 259263, Univ. of Mass. Urban Harbors Inst., Boston.
  • Lavrentyev, P. J., D. A. Stockwell, and T. E. Whitledge (2001), The distribution of microbial plankton in the Bering Sea during the anomalous coccolithophore bloom in summer 1998 (abstract), in 2001 Aquatic Sciences Meeting, edited by J. D. Ackerman, and S. Twombly, p. 86, Am. Soc. of Limnol. and Oceanogr., Albuquerque, N. M.
  • Longhurst, A. R. (1998), Ecological Geography of the Sea, Elsevier, New York.
  • Maier-Reimer, E. (1996), Dynamic vs. apparent Redfield radio in the oceans: A case for 3D models, J. Mar. Syst., 9, 113120.
  • Malin, G., S. Turner, P. Liss, P. Holligan, and D. Harbour (1993), Dimethylsulphide and dimethylsulphoniopropianate in the northeast Atlantic during the summer coccolithophore bloom, Deep Sea Res., Part I, 40, 14871508.
  • Matrai, P. A., and M. D. Keller (1993), Dimethylsulfide in a large-scale coccolithophore bloom in the Gulf of Maine, Cont. Shelf Res., 13, 831843.
  • Milliman, J. D. (1993), Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state, Global Biogeochem. Cycles, 7, 927957.
  • Milliman, J., P. J. Troy, W. Balch, A. K. Adams, Y.-H. Li, and F. T. MacKenzie (1999), Biologically-mediated dissolution of calcium carbonate above the chemical lysocline? Deep Sea Res., Part I, 46, 16531669.
  • Morel, A. (1988), Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters), J. Geophys. Res., 93, 10,74910,768.
  • Morse, J. W., and F. T. Mackenzie (1990), Geochemistry of Sementary Carbonates, Elsevier, New York.
  • Mueller, J. L., et al. (2003), Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, vol. 3, Radiometric Measurements and Data Analysis Protocols, rev. 4, 78 pp., NASA Goddard Space Flight Cent., Greenbelt, Md.
  • Najjar, R. G., J. L. Sarmiento, and J. R. Toggweiler (1992), Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model, Global Biogeochem. Cycles, 6, 4576.
  • Napp, J. M., and G. L. J. Hunt (2001), Anomalous conditions in the southeastern Bering Sea 1997: Linkages among climate, weather, ocean and biology, Fish. Oceanogr., 10, 6168.
  • Paasche, E. (1962), Coccolith formation, Nature, 193, 10941095.
  • Paasche, E. (1998), Roles of nitrogen and phosphorus in coccolith formation in Emiliania huxleyi (Prymnesiophyceae), Eur. J. Phycol., 33, 3342.
  • Paasche, E. (1999), Reduced coccolith calcite production under light-limited growth: A comparative study of three clones of Emiliania huxleyi (Prymnesiophyceae), Phycologia, 38, 508516.
  • Paasche, E. (2002), A review of the coccolithphorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions, Phycologia, 40, 503529.
  • Paasche, E., S. Brubak, S. Skattebøl, J. R. Young, and J. C. Green (1996), Growth and calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) at low salinities, Phycologia, 35, 394403.
  • Peng, T.-H., R. Wanninkhof, J. L. Bullister, R. A. Feely, and T. Takahashi (1998), Quantification of decadal anthropogenic CO2 uptake in the ocean based on dissolved inorganic carbon measurements, Nature, 396, 560563.
  • Riebesell, U., D. A. Wolf-Gladrow, and V. Smetacek (1993), Carbon dioxide limitation of marine phytoplankton growth rates, Nature, 361, 249251.
  • Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe, and F. M. M. Morel (2000), Reduced calcification of marine plankton in response to increased atmospheric CO2, Nature, 407, 311313.
  • Riebesell, U., I. Zondervan, B. Rost, and R. E. Zeebe (2001), Effects of increasing atmospheric CO2 on phytoplankton communities and the biological carbon pump, Global Change Newsl., 47, 1215.
  • Robertson, J. E., C. Robinson, D. R. Turner, P. Holligan, A. J. Watson, P. Boyd, E. Fernandez, and M. Finch (1994), The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991, Deep Sea Res., Part I, 41, 297314.
  • Sabine, C. L., et al. (2004), The oceanic sink for anthropogenic CO2, Science, 305, 367371.
  • Samtleben, C., and T. Bickert (1990), Coccoliths in sediment traps from the Norwegian Sea, Mar. Micropaleontol., 16, 3964.
  • Sarmiento, J. L., J. Dunne, A. Gnanadesikan, R. M. Key, K. Matsumoto, and R. Slater (2002), A new estimate of the CaCO3 to organic carbon export ratio, Global Biogeochem. Cycles, 16(4), 1107, doi:10.1029/2002GB001919.
  • Seibold, E., and W. H. Berger (1982), The Sea Floor: An Introduction to Marine Geology, 288 pp., Springer, New York.
  • Shaw, G. E. (1983), Bio-controlled thermostasis involving the sulfur cycle, Clim. Change, 5, 297303.
  • Steele, J. H., and I. E. Baird (1962), Further relations between primary production, chlorophyll and particulate carbon, Limnol. Oceanogr., 7, 4247.
  • Stockwell, D. A., T. E. Whitledge, T. Rho, P. J. Stabeno, K. O. Coyle, J. M. Napp, S. I. Zeeman, and G. L. Hunt (2000), Field observations in the southeastern Bering Sea during three years with extensive coccolithophorid blooms (abstract), Eos Trans. AGU, 81, Ocean Sci. Meet. Suppl., Abstract OS12D-03.
  • Stumm, W., and J. J. Morgan (1981), Aquatic Chemistry, John Wiley, Hoboken, N. J.
  • Sundquist, E. T. (1993), The global carbon dioxide budget, Science, 259, 934941.
  • Takahashi, W., T. Hiwatari, H. Fukushima, M. Toratani, and T. Akano (1995), High-reflectance waters of possible coccolithophore blooms in NW pacific: Analysis of 1979–86 Nimbus-7/CZCS data set, Japanese, 6, 477486.
  • Townsend, D. W., M. D. Keller, P. M. Holligan, S. G. Ackleson, and W. M. Balch (1994), Blooms of the coccolithophore Emiliania huxleyi with respect to hydrography in the Gulf of Maine, Cont. Shelf Res., 14, 9791000.
  • Troy, P. J., Y.-H. Li, and F. T. MacKenzie (1997), Changes in surface morphology of calicite exposed to the oceanic water column, Aquat. Geochem., 3, 120.
  • Tyrell, T., P. M. Holligan, and C. D. Mobley (1999), Optical impacts of oceanic coccolithophore blooms, J. Geophys. Res., 104, 32233241.
  • Van der Wal, P., R. S. Kempers, and M. J. W. Veldhuis (1995), Production and downward flux of organic matter and calcite in a North Sea bloom of the coccolithophore Emiliania huxleyi, Mar. Ecol. Prog. Ser., 126, 247265.
  • Volk, T., and M. I. Hoffert (1985), Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric pCO2 changes, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist, and W. S. Broecker, pp. 99110, AGU, Washington, D. C.
  • Wal, P. D., R. S. Kempers, and M. J. W. Veldhuis (1995), Production and downward flux of organic matter and calcite in a North Sea bloom of the coccolithophore Emiliania huxleyi, Marine Ecol. Prog. Ser., 126, 247265.
  • Wollast, R. (1994), The relative importance of biomineralization and dissolution of CaCO3 in the global carbon cycle, report, edited by F. Doumenge, D. Allemand, and A. Toulemont, pp. 1335, Mus. Oceanogr., Monaco.
  • Young, J. R., and P. Ziveri (1999), Calculation of coccolith volume and its use in calibration of carbonate flux estimates, Deep Sea Res., Part II, 47, 16791700.