SEARCH

SEARCH BY CITATION

References

  • Adams, E. E., A. J. Caulfield, H. J. Herzog, and D. I. Auerbach (1997), Impacts of reduced pH from ocean CO2 disposal: Sensitivity of zooplankton mortality to model parameters, Waste Manage., 17, 375380.
  • Alvarado-Alvarez, R., M. C. Gould, and I. L. Stephano (1996), Spawning, in vitro maturation and changes in oocyte electrophysiology induced by serotonin in Tivela stultorum, Biol. Bull., 190, 322328.
  • Angel, M. V. (1991), Variations in time and space: Is biogeography relevant to studies of long-time scale change? J. Mar. Biol. Assoc. U. K., 71, 191206.
  • Aota, S., K. D. Holmgren, P. Gallaugher, and D. J. Randall (1990), A possible role for catecholamines in the ventilatory responses associated with internal acidosis or external hypoxia in rainbow trout Oncorhynchus mykiss, J. Exper. Biol., 151, 5770.
  • Auerbach, D., H. Herzog, E. Adams, and J. Caulfield (1996), Environmental impacts of CO2 release into the ocean, topical report, Mass. Inst. of Technol., Cambridge.
  • Auerbach, D., J. A. Caulfield, E. E. Adams, and H. J. Herzog (1997), Impacts of ocean CO2 disposal on marine life: I. A toxicological assessment integrating constant-concentration laboratory assay data with variable-concentration field exposure, Environ. Modell. Assess., 2, 333343.
  • Bambach, R. K., A. H. Knoll, and J. J. Sepkowski Jr. (2002), Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm, Proc. Natl. Acad. Sci., 99, 68456859.
  • Bamber, R. N. (1987), The effects of acidic sea water in young carpet-shell clams, Venerupis decussata (L.) (Mollusca: Venracea), J. Exper. Mar. Biol. Ecol., 108, 241260.
  • Bamber, R. N. (1990), The effects of acidic sea water on three species of lamellibranch molluscs, J. Exper. Mar. Biol. Ecol., 143, 181191.
  • Barnhart, M. C. (1989), Respiratory acidosis and metabolic depression in dormant invertebrates, in Living in the Cold, edited by A. Malan, and B. Canguilhem, pp. 315401, Colloque INSERM/John Libbey Eurotext Ltd., London.
  • Barnhart, M. C., and B. R. McMahon (1988), Depression of aerobic metabolism and intracellular pH by hypercapnia in land snails Otala lactea, J. Exper. Biol., 138, 289299.
  • Barros, R. C., and L. G. S. Branco (1998), Effect of nitric oxide synthase inhibition on hypercapnia-induced hypothermia and hyperventilation, J. Appl. Physiol., 85, 967972.
  • Barry, J. P., K. R. Buck, C. Lovera, L. Kuhnz, and P. J. Whaling (2005), Utility of deep sea CO2 release experiments in understanding the biology of a high-CO2 ocean: Effects of hypercapnia on deep sea meiofauna, J. Geophys. Res., 110, C09S12, doi:10.1029/2004JC002629.
  • Berner, R. A., and Z. Kothalova (2001), Geocarb III: A revised model of atmospheric CO2 over phanerozoic time, Am. J. Sci., 301, 182204.
  • Bernier, N. J., and S. F. Perry (1996), Control of catecholamine and serotonin release from the chromaffin tissue of the Atlantic hagfish, J. Exper. Biol., 199, 24852497.
  • Branco, L. G. S., and A. A. Steiner (1999), Central thermoregulatory effects of lactate in the toad Bufo paracnemis, Comput. Biochem. Physiol. A, 122, 457461.
  • Branco, L. G. S., H. O. Pörtner, and S. C. Wood (1993), Interaction between temperature and hypoxia in the alligator, Am. J. Physiol., 265, 13391343.
  • Branco, L. G. S., A. A. Steiner, G. J. Tattersall, and S. C. Wood (2000), Role of adenosine in the hypoxia-induced hypothermia of toads, Am. J. Physiol., 279, 196201.
  • Brevard, M. E., T. Q. Duong, J. A. King, and C. F. Ferris (2003), Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions, Magn. Res. Imag., 21, 9951001.
  • Brewer, P. G. (1997), Ocean chemistry of the fossil fuel CO2 signal: The haline signal of “business as usual,”, Geophys. Res. Lett., 24, 13671369.
  • Bridges, C. R. (1993), Adaptation of vertebrates to the intertidal environment, in The Vertebrate Gas Transport Cascade: Adaptations to Environment and Mode of Life, edited by J. E. P. W. Bicudo, pp. 1222, CRC Press, Boca Raton, Fla.
  • Buesseler, K. O., and P. W. Boyd (2003), Will ocean fertilization work? Science, 300, 6768.
  • Burleson, M. L., and N. J. Smatresk (2000), Branchial chemoreceptors mediate ventilatory response to hypercapnic acidosis in channel catfish, Comput. Biochem. Physiol. A, 125, 403414.
  • Caldeira, K., and G. H. Rau (2000), Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: Geochemical implications, Geophys. Res. Lett., 27, 225228.
  • Caldeira, K., and M. E. Wickett (2003), Anthropogenic carbon and ocean pH, Nature, 425, 365.
  • Chisholm, S. W., P. G. Falkowski, and J. J. Cullen (2001), OCEANS: Dis-crediting ocean fertilization, Science, 294, 309310.
  • Cossins, A. R., and K. Bowler (1987), Temperature Biology of Animals, 339 pp., CRC Press, Boca Raton, Fla.
  • Crocker, C. E., and J. J. Cech (1996), The effects of hypercapnia on the growth of juvenile white sturgeon, Acipenser transmontanus, Aquaculture, 147, 293299.
  • Dean, J. B., D. K. Mulkey, A. J. Garcia III, R. W. Putnam, and R. A. Henderson III (2003), Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures, J. Appl. Physiol., 95, 883909.
  • Desrosiers, R. R., J. Desilets, and F. Dube (1996), Early developmental events following fertilization in the giant scallop, Placopecten magellanicus, Can. J. Fish. Aquat. Sci., 53, 13821392.
  • De Wachter, B., F.-J. Sartoris, and H.-O. Pörtner (1997), The anaerobic endproduct lactate has a behavioural and metabolic signalling function in the shore crab Carcinus maenas, J. Exper. Biol., 200, 10151024.
  • Diaz, R. J., and R. Rosenburg (1995), Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna, Oceanogr. Mar. Biol. Annu. Rev., 33, 245303.
  • Done, T. J. (1999), Coral community adaptability to environmental change at the scales of regions, reefs and reef zones, Am. Zool., 39, 6679.
  • Doudoroff, P. (1945), The resistance and acclimatization of marine fishes to temperature changes. II. Experiments with Fundulus and Atherinops, Biol. Bull., 88, 194206.
  • Dudley, R. (1998), Atmospheric oxygen, giant Palaeozoic insects and the evolution of aerial locomotor performance, J. Exper. Biol., 201, 10431050.
  • Filosa, J. A., J. B. Dean, and R. W. Putnam (2002), Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones, J. Physiol., 541, 493509.
  • Frederich, M., and H. O. Pörtner (2000), Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in the spider crab Maja squinado, Am. J. Physiol., 279, 15311538.
  • Gribbin, J. (1988), Any old iron? Nature, 331, 570.
  • Grieshaber, M. K., I. Hardewig, U. Kreutzer, and H. O. Pörtner (1994), Physiological and metabolic responses to hypoxia in invertebrates, Rev. Physiol. Biochem. Pharmacol., 125, 43147.
  • Grottum, I. A., and T. Sigholt (1996), Acute toxicity of carbon dioxide on European seabass (Dicentrarchus labrax): Mortality and effects on plasma ions, Comput. Biochem. Physiol. A, 116, 323327.
  • Guppy, M., and P. Withers (1999), Metabolic depression in animals: Physiological perspectives and biochemical generalizations, Biol. Rev., 74, 140.
  • Hand, S. C., and I. Hardewig (1996), Downregulation of cellular metabolism during environmental stress: Mechanisms and implications, Annu. Rev. Physiol., 58, 539563.
  • Haugan, P. M., and H. Drange (1996), Effects of CO2 on the ocean environment, Energy Convers. Manage., 37, 10191022.
  • Heisler, N. (1986a), Buffering and transmembrane ion transfer processes, in Acid-Base Regulation in Animals, edited by N. Heisler, pp. 347, Elsevier, New York.
  • Heisler, N. (1986b), Acid-base regulation in fishes, in Acid-Base Regulation in Animals, edited by N. Heisler, pp. 309356, Elsevier, New York.
  • Hofmann, G. E., and S. C. Hand (1994), Global arrest of translation during invertebrate quiescence, Proc. Natl. Acad. Sci. U. S. A., 91, 84928496.
  • Huch, M., G. Warnecke, and K. Germann (Eds.) (2001), Klimazeugnisse der Erdgeschichte: Perspektiven für die Zukunft, 229 pp., Springer, New York.
  • Hylland, P., S. Milton, M. Pek, G. E. Nilsson, and P. L. Lutz (1997), Brain Na+/K+-ATPase activity in two anoxia tolerant vertebrates: Crucian carp and freshwater turtle, Neurosci. Lett., 235, 8992.
  • Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change 2001: Impacts, Adaptations and Vulnerability, Cambridge Univ. Press, New York.
  • Ingermann, R. L., M. Holcomb, M. L. Robinson, and J. G. Cloud (2002), Carbon dioxide and pH affect sperm motility of white sturgeon (Acipenser transmontanus), J. Exper. Biol., 205, 28852890.
  • Ishimatsu, A., T. Kikkawa, M. Hayashi, K.-S. Lee, and J. Kita (2004), Effects of CO2 on marine fish: Larvae and adults, J. Oceanogr., 60, 731741.
  • Jacobs, D. K., and D. R. Lindberg (1998), Oxygen and evolutionary patterns in the sea: Onshore/offshore trends and recent recruitment of deep-sea faunas, Proc. Natl. Acad. Sci., 95, 93969401.
  • Johnston, I. A., and A. F. Bennett (Eds.) (1996), Animals and Temperature: Phenotypic and Evolutionary Adaptation, Cambridge Univ. Press, New York.
  • Joos, F., G. K. Plattner, T. F. Stocker, A. Körtzinger, and D. W. R. Wallace (2003), Trends in marine dissolved oxygen: Implications for ocean circulation changes and the carbon budget, Eos Trans. AGU, 84, 197,201.
  • Kheshgi, H. S. (1995), Sequestering atmospheric carbon dioxide by increasing ocean alkalinity, Energy Int. J., 20, 915922.
  • Kikkawa, T., A. Ishimatsu, and J. Kita (2003), Acute CO2 tolerance during the early developmental stages of four marine teleosts, Environ. Toxicol., 18, 375382.
  • Knoll, A. K., R. K. Bambach, D. E. Canfield, and J. P. Grotzinger (1996), Comparative Earth history and late Permian mass extinction, Science, 273, 452457.
  • Kurihara, H., S. Shimode, and Y. Shirayama (2004), Effects of raised concentration of CO2 on the life histories of marine organisms, J. Oceanogr., 60, 743750.
  • Lackner, K. S. A. (2003), A guide to CO2 sequestration, Science, 300, 16771678.
  • Langenbuch, M., and H. O. Pörtner (2002), Changes in metabolic rate and N-excretion in the marine invertebrate Sipunculus nudus under conditions of environmental hypercapnia: Identifying effective acid-base parameters, J. Exper. Biol., 205, 11531160.
  • Langenbuch, M., and H. O. Pörtner (2003), Energy budget of Antarctic fish hepatocytes (Pachycara brachycephalum and Lepidonotothen kempi) as a function of ambient CO2: pH dependent limitations of cellular protein biosynthesis? J. Exper. Biol., 206, 38953903.
  • Langenbuch, M., and H. O. Pörtner (2004), High sensitivity to chronically elevated CO2 in marine invertebrates, Aquat. Toxicol., 70, 5561.
  • Larsen, B. K., H. O. Pörtner, and F. B. Jensen (1997), Extra- and intracellular acid-base balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper, Mar. Biol., 128, 337346.
  • Lee, K.-S., J. Kita, and A. Ishimatsu (2003), Effects of lethal levels of environmental hypercapnia on cardiovascular and blood-gas status in yellowtail Seriola quinqueradiata, Zool. Sci., 20, 417422.
  • Lutz, P. L., and G. E. Nielsson (1997), Contrasting strategies for anoxic brain survival—Glycolysis up or down, J. Exper. Biol., 200, 411419.
  • Marchetti, C. (1977), On geoengineering and the CO2 problem, Clim. Change, 1, 5968.
  • Marchetti, C. (1979), Constructive solutions to the CO2 problem, in Man's Impact on Climate, edited by W. Bach, J. Pankrath, and W. Kellogg, pp. 299311, Elsevier, New York.
  • Marubini, F., and M. J. Atkinson (1999), Effects of lowered pH and elevated nitrate on coral calcification, Mar. Ecol. Prog. Ser., 188, 117121.
  • Matear, R. J., A. C. Hirts, and B. I. McNeil (2000), Changes in dissolved oxygen in the Southern Ocean with climate change, Geochem. Geophys. Geosyst., 1, doi:10.1029/2000GC000086.
  • McKendry, J. E., W. K. Milsom, and S. F. Perry (2001), Branchial CO2 receptors and cardiorespiratory adjustments during hypercarbia in Pacific spiny dogfish (Squalus acanthias), J. Exper. Biol., 204, 15191527.
  • McKenzie, D. J., E. W. Taylor, A. Z. Dalla Valle, and J. F. Steffensen (2002), Tolerance of acute hypercapnic acidosis by the European eel (Anguilla anguilla), J. Comput. Physiol., 172, 339346.
  • Michaelidis, B., C. Ouzounis, A. Paleras, and H. O. Pörtner (2005), Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels (Mytilus galloprovincialis), Mar. Ecol. Prog. Ser., 293, 109118.
  • Nakahata, K., H. Kinoshita, Y. Hirano, Y. Kimoto, H. Iranami, and Y. Hatano (2003), Mild hypercapnia induces vasodilation via adenosine triphosphate-sensitive K+ channels in parenchymal microvessels of the rat cerebral cortex, Anaesthesiology, 99, 13331339.
  • Ohsumi, T. (1993), Prediction of solute carbon dioxide behaviour around a liquid carbon dioxide pool on deep ocean basin, Energy Convers. Manage., 33, 685690.
  • Parmesan, C., and G. Yohe (2003), A globally coherent fingerprint of climate change impacts across natural systems, Nature, 421, 3742.
  • Perry, S. F., R. Kinkead, P. Gallaugher, and D. J. Randall (1989), Evidence that hypoxemia promotes catecholamine release during hypercapnic acidosis in rainbow trout (Salmo gairdneri), Respir. Physiol., 77, 351364.
  • Pielou, E. C. (1979), A quick method of determining the diversity of foraminiferal assemblages, J. Paleontol., 53, 12371242.
  • Plattner, G.-K., F. Joos, and T. F. Stocker (2002), Revision of the global carbon budget due to changing air-sea oxygen fluxes, Global Biogeochem. Cycles, 16(4), 1096, doi:10.1029/2001GB001746.
  • Pörtner, H. O. (1990), An analysis of the effects of pH on oxygen binding by squid (Illex illecebrosus, Loligo pealei) haemocyanin, J. Exper. Biol., 150, 407424.
  • Pörtner, H. O. (1993), Multicompartmental analyses of acid-base and metabolic homeostasis during anaerobiosis: Invertebrate and lower vertebrate examples, in Surviving Hypoxia: Mechanisms of Control and Adaptation, edited by P. W. Hochachka et al., pp. 139156, CRC Press, Boca Raton, Fla.
  • Pörtner, H. O. (2001), Climate change and temperature dependent biogeography: Oxygen limitation of thermal tolerance in animals, Naturwissenschaften, 88, 137146.
  • Pörtner, H. O. (2002a), Climate change and temperature dependent biogeography: Systemic to molecular hierarchies of thermal tolerance in animals, Comput. Biochem. Physiol. A, 132, 739761.
  • Pörtner, H. O. (2002b), Physiological basis of temperature dependent biogeography: Tradeoffs in muscle design and performance in polar ectotherms, J. Exper. Biol., 205, 22172230.
  • Pörtner, H. O. (2004), Climate variability and the energetic pathways of evolution: The origin of endothermy in mammals and birds, Physiol. Biochem. Zool., 77, 959981.
  • Pörtner, H. O., and M. K. Grieshaber (1993), Critical PO2(s) in oxyconforming and oxyregulating animals: Gas exchange, metabolic rate and the mode of energy production, in The Vertebrate Gas Transport Cascade: Adaptations to Environment and Mode of Life, edited by J. E. P. W. Bicudo, pp. 330357, CRC Press, Boca Raton, Fla.
  • Pörtner, H. O., and A. Reipschläger (1996), Ocean disposal of anthropogenic CO2: Physiological effects on tolerant and intolerant animals, in Ocean Storage of CO2: Environmental Impact, pp. 5781, Mass. Inst. of Technol., Int. Energy Agency, Cambridge.
  • Pörtner, H. O., L. G. S. Branco, G. M. Malvin, and S. C. Wood (1994), A new function for lactate in the toad Bufo marinus, J. Appl. Physiol., 76, 24052410.
  • Pörtner, H. O., A. Reipschläger, and N. Heisler (1998), Metabolism and acid-base regulation in Sipunculus nudus as a function of ambient carbon dioxide, J. Exper. Biol., 201, 4355.
  • Pörtner, H. O., C. Bock, and A. Reipschläger (2000), Modulation of the cost of pHi regulation during metabolic depression: A 31P-NMR study in invertebrate (Sipunculus nudus) isolated muscle, J. Exper. Biol., 203, 24172428.
  • Pörtner, H. O., et al. (2001), Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: Developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus), Cont. Shelf Res., 21, 19751997.
  • Pörtner, H. O., M. Langenbuch, and A. Reipschläger (2004a), Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and Earth history? J. Oceanogr., 60, 705718.
  • Pörtner, H. O., F. C. Mark, and C. Bock (2004b), Oxygen limited thermal tolerance in fish? Answers obtained by Nuclear Magnetic Resonance techniques, Respir. Physiol. Neurobiol., 141, 243260.
  • Rapoport, E. H. (1994), Remarks on marine and continental biogeography: An aerographical viewpoint, Philos. Trans. R. Soc. London, Ser. B, 343, 7178.
  • Redfield, A. C., and R. Goodkind (1929), The significance of the Bohr effect on the respiration and asphyxiation of the squid, Loligo pealei, J. Exper. Biol., 6, 340349.
  • Rees, B. B., and S. C. Hand (1990), Heat dissipation, gas exchange and acid-base status in the land snail Oreohelix during short-term estivation, J. Exper. Biol., 152, 7792.
  • Reid, S. G., N. J. Bernier, and S. F. Perry (1998), The adrenergic response in fish: Control of catecholamine storage and release, Comput. Biochem. Physiol. A, 120, 127.
  • Reipschläger, A., and H. O. Pörtner (1996), Metabolic depression during environmental stress: The role of extra- versus intracellular pH in Sipunculus nudus, J. Exper. Biol., 199, 18011807.
  • Reipschläger, A., G. E. Nilsson, and H. O. Pörtner (1997), A role for adenosine in metabolic depression in the marine invertebrate Sipunculus nudus, Am. J. Physiol., 272, 350356.
  • Riebesell, U., D. A. Wolf-Gladrow, and V. Smetacek (1993), Carbon dioxide limitation of marine phytoplankton growth rates, Nature, 361, 249251.
  • Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe, and F. M. M. Morel (2000), Reduced calcification in marine plankton in response to increased atmospheric CO2, Nature, 407, 634637.
  • Riedel, C., and S. C. Wood (1988), Effects of hypercapnia and hypoxia on temperature selection on temperature selection of the toad, Bufo marinus, Fed. Proc., 2, A500.
  • Robertson, R. F., J. Meagor, and E. W. Taylor (2002), Specific dynamic action in the shore crab, Carcinus maenas (L.), in relation to acclimation temperature and to the onset of the emersion response, Physiol. Biochem. Zool., 75, 350359.
  • Robitaille, S., S. Thomas, and M. P. Charlton (1999), Effects of adenosine and Ca2+ entry in the nerve terminal of the frog neuromuscular junction, Can. J. Phyisol. Pharmacol., 77, 707714.
  • Rudolphi, K. A., P. Schubert, F. E. Parkinson, and B. B. Fredholm (1992), Adenosine and brain ischemia, Cerebrovascular Brain Metabolism Rev., 4, 346369.
  • Sarmiento, J. L., and J. C. Orr (1991), Three-dimensional simulations of the impact of the Southern Ocean nutrients depletion on atmospheric CO2 and ocean chemistry, Limnol. Oceanogr., 36, 19281950.
  • Scheid, P., H. Shams, and J. Piiper (1989), Gas exchange in vertebrates, Verh. Dtsch. Zool. Ges., 82, 5768.
  • Schurmann, H., and J. F. Steffensen (1992), Lethal oxygen levels at different temperatures and the preferred temperature during hypoxia of the Atlantic cod, Gadus morhua, J. Fish Biol., 41, 927934.
  • Schwartz, A. D., C. L. Whitacre, Y. Lin, and D. F. Wilson (2003), Adenosine inhibits N-type calcium channels at the rat neuromuscular junctions, Clin. Exper. Pharmacol. Physiol., 30, 174177.
  • Shirayama, Y. (2002), Towards comprehensive understanding of impacts on marine organisms due to raised CO2 concentration, in Proceedings of the 5th International Symposium on CO2Fixation and Efficient Utilization of Energy, pp. 177181, Tokyo Inst. of Technol, Tokyo.
  • Shirayama, Y., and H. Thornton (2005), Effect of increased atmospheric CO2 on shallow-water marine benthos, J. Geophys. Res., 110, C09S08, doi:10.1029/2004JC002618.
  • Söderström, V., and G. E. Nilsson (2000), Brain blood flow during hypercapnia in fish: No role of nitric oxide, Brain Res., 857, 207211.
  • Sokolova, I. M., and H. O. Pörtner (2003), Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda: Littorinidae) from different latitudes, J. Exper. Biol., 206, 195207.
  • Takeda, T., and Y. Itazawa (1983), Possibility of applying anesthesia by carbon dioxide in the transportation of live fish, Bull. Jpn. Soc. Sci. Fish., 49, 725731.
  • Tamburri, M. N., E. T. Peltzer, G. E. Friederich, I. Aya, K. Yamane, and P. G. Brewer (2000), A field study of the effects of CO2 ocean disposal on mobile deep-sea animals, Mar. Chem., 72, 24.
  • Thomas, C. D., et al. (2004), Extinction risk from climate change, Nature, 427, 145148.
  • Thomas, S., and S. Robitaille (2001), Differential frequency-dependent regulation of transmitter release by endogenous nitric oxide at the amphibian neuromuscular synapse, J. Neurosci., 21, 10871095.
  • van Breukelen, F., R. Maier, and S. C. Hand (2000), Depression of nuclear transcription and extension of mRNA half life under anoxia in Artemia franciscana embryos, J. Exper. Biol., 203, 11231130.
  • Vesela, A., and J. Wilhelm (2002), The role of carbon dioxide in free radical reactions of the organism, Physiol. Res., 51, 335339.
  • Vinogradov, G. A., and V. T. Komov (1985), Ion regulation in the perch, Perca fluviatilis, in connection with the problem of acidification of water bodies, J. Ichthyol., 25, 5361.
  • Wang, W., S. R. Bradley, and G. B. Richerson (2002), Quantification of the response of rat medullary raphe neurons to independent changes in pHo and PCO2, J. Physiol., 540, 951970.
  • Wheatly, M. G. (1989), Physiological response of the crayfish Pacifasticus leniusculus (Dana) to environmental hypoxia. I. Extracellular acid-base and electrolyte status and trans-branchial exchange, J. Exper. Biol., 57, 673680.
  • Wickins, J. F. (1984), The effect of hypercapnic sea water on growth and mineralization in penaeid prawns, Aquaculture, 41, 3748.
  • Wolf-Gladrow, D. A., U. Riebesell, S. Burkhardt, and J. Bijma (1999), Direct effects of CO2 concentrations on growth and isotopic composition of marine plankton, Tellus, Ser. B, 51, 461476.
  • Wood, C. M., and D. G. MacDonald (Eds.) (1997), Global Warming: Implications for Freshwater and Marine Fish, 425 pp., Cambridge Univ. Press, New York.
  • Wood, S. C., and G. M. Malvin (1991), Physiological significance of behavioral hypothermia in hypoxic toads, Bufo marinus, J. Exper. Biol., 159, 203215.
  • Yamada, Y., and T. Ikeda (1999), Acute toxicity of lowered pH to some oceanic zooplankton, Plankton Biol. Ecol., 46, 6267.