SEARCH

SEARCH BY CITATION

References

  • Adams, E., D. Golomb, X. Y. Zhang, and H. J. Herzog (1995), Confined release of CO2 into shallow sea water, in Direct Ocean Disposal of Carbon Dioxide, edited by N. Handa, and T. Ohsumi, pp. 153164, Terra Sci., Tokyo.
  • Adams, E., M. Akai, L. Golmen, P. M. Haugan, H. Herzog, S. Masuda, S. Masudani, T. Ohsumi, and C. S. Wong (1999), An international experiment on CO2 ocean sequestration, in Greenhouse Gas Control Technologies, edited by P. Riemer, B. Eliasson, and A. Wokaun, pp. 293298, Elsevier, New York.
  • Alendal, G., and H. Drange (2001), Two-phase, near-field modeling of purposefully released CO2 in the ocean, J. Geophys. Res., 106, 10851096.
  • Alendal, G., H. Drange, and F. Thorkildsen (1998), Two-phase modeling of CO2 droplet plumes, Tech. Rep. 153, Natl. Energy Res. Sci. Comput., U.S. Dep. of Energy, Washington, D. C.
  • Asaeda, T., and J. Imberger (1993), Structure of bubble plumes in linearly stratification environments, J. Fluid Mech., 294, 3557.
  • Aya, I., K. Yamane, and H. Nariai (1997), Solubility of CO2 and density of CO2 hydrate at 30 MPa, Energy, 22, 263271.
  • Bacastow, R., and E. Maier-Reimer (1990), Ocean-circulation model of the carbon cycle, Clim. Dyn., 4, 95125.
  • Bradshaw, A. (1973), The effect of carbon dioxide on the specific volume of sea water, Limnol. Oceanogr., 18, 95105.
  • Brewer, P. G., G. Friederich, E. T. Peltzer, and F. M. Orr Jr. (1999), Direct experiment on the ocean disposal of fossil fuel CO2, Science, 284, 943945.
  • Brewer, P., E. Peltzer, G. Friedrich, and G. Rehder (2002), Experimental determination of the fate of rising CO2 droplets in seawater, Environ. Sci. Technol., 36, 54415446.
  • Caldeira, K., M. E. Wickett, and P. B. Duffy (2002), Depth, radiocarbon, and the effectiveness of direct CO2 injection as an ocean carbon sequestration strategy, Geophys. Res. Lett., 29(16), 1766, doi:10.1029/2001GL014234.
  • Chen, B., S. Masuda, M. Nishio, S. Someya, and M. Akai (2000), Two-fluid turbulent modeling of LCO2 dissolution in the ocean by LES, in Proceedings of the 2000 ASME, vol. 2, edited by D. E. Stock, pp. 881888, Am. Soc. of Mech. Eng., New York.
  • Chen, B., Y. Song, M. Nishio, and M. Akai (2003), Large-eddy simulation on double-plume formation induced by CO2 dissolution in the ocean, Tellus, Ser. B, 55, 723730.
  • Clift, R., J. R. Grace, and M. E. Weber (1978), Bubbles, Droplets, and Particles, Elsevier, New York.
  • Crounse, B., E. Adams, S. Socolofsky, and T. Harrison (2001), Application of a double plume model to compute near field mixing for the International Field Experiment of CO2 Ocean Sequestration, in Greenhouse Gas Control Technologies, edited by D. J. Williams et al., pp. 411416, Collingwood, Australia.
  • Crowe, C., M. Sommerfeld, and Y. Tsuji (1998), Multiphase Flows With Droplets and Particles, CRC Press, Boca Raton, Fla.
  • Drange, H., G. Alendal, and P. M. Haugan (1993), A bottom gravity current model for CO2-enriched seawater, Energy Convers. Manage., 34, 10651072.
  • Drange, H., G. Alendal, and O. M. Johannessen (2001), Ocean release of fossil fuel CO2: A case study, Geophys. Res. Lett., 29, 26372640.
  • Dutay, J. C., et al. (2002), Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models, Ocean Modell., 4, 89120.
  • Fer, I., and P. M. Haugan (2003), Dissolution from a liquid CO2 lake disposed in the deep ocean, Limnol. Oceanogr., 48, 872883.
  • Grossmann, S., and D. Lohse (1992), Intermittency in the Navier-Stokes dynamics, Z. Phys. B, 89, 1116.
  • Haugan, P. M. (2003), On the production and use of scientific knowledge about ocean sequestration, in Greenhouse Gas Control Technologies, edited by J. Gale and Y.|Kaya, pp. 719–724, Elsevier, New York.
  • Haugan, P. M., and H. Drange (1992), Sequestration of CO2 in the deep ocean by shallow injection, Nature, 357, 318320.
  • Herzog, H., D. Golomb, and S. Zemba (1991), Feasibility, modeling and economics of sequestratering power plant CO2 emissions in the deep ocean, Environ. Prog., 10, 6474.
  • Herzog, H., E. Adams, D. Auerbach, and J. Caulfield (1996), Environmental impacts of ocean disposal of CO2, Energy Convers. Manage., 37, 9991005.
  • Hirai, S., K. Okazaki, H. Yazawa, H. Ito, Y. Tabe, and K. Hijikata (1997a), Measurement of CO2 diffusion coefficient and application of LIT in pressurized water, Energy, 22, 363367.
  • Hirai, S., K. Okazaki, Y. Tabe, K. Hijikata, and Y. Mori (1997b), Dissolution rate of liquid CO2 in pressurized water flows and the effect of clathrate films, Energy, 22, 285293.
  • Hirsch, C. (1991), Numerical Computation of Internal and External Flows, vol. 2, John Wiley, Hoboken, N. J.
  • Hoffert, M. I., Y.-C. Wey, A. J. Callegari, and W. S. Broecker (1979), Atmospheric response to deep-sea injections of fossil-fuel carbon dioxide, Clim. Change, 2, 5368.
  • Holloway, G. (1993), The role of ocean in climate change: A challenge to large-eddy simulation, in Large Eddy Simulation of Complex Engineering and Geophysical Flows, edited by B. Galperin, and T. Orszag, pp. 425455, Cambridge Univ. Press., New York.
  • Kimuro, H., T. Kusayanagi, and M. Morishita (1994), Basic experimental results of liquid CO2 injection into the deep ocean, IEEE Trans. Energy Convers., 9, 732735.
  • Kolmogorov, A. N. (1941), Dissipation of energy in locally isotropic turbulence, C. R. Acad. Sci. URSS, 32, 1618.
  • Lesieur, M., and O. Métais (1996), New trends in large-eddy simulations of turbulence, Annu. Rev. Fluid Mech., 28, 4582.
  • Maeda, Y., Y. Koike, K. Shirashima, N. Nakashiki, and T. Ohsumi (2000), Direct measurements of currents in west coast of Hawaii island (1.2 miles offshore of Kahole Pt.), technical report, Cent. Res. Inst. of Electric Power Energy, Tokyo.
  • Marchetti, C. (1977), On geoengineering and the CO2 problem, Clim. Change, 1, 5968.
  • Mathew, E. M., and L. M. Julie (2005), An eddy resolving global 1/10 ocean simulation, Ocean Modell., 8, 3154.
  • McDougall, T. J. (1978), Bubble plumes in stratified environments, J. Fluid Mech., 85, 655672.
  • Mori, Y. H. (1998), Clathrate hydrate formation at the interface between liquid CO2 and water phases—A review of rival models characterizing “hydrate films,”, Energy Convers. Manage., 39, 15371557.
  • Nakashiki, N., and T. Ohsumi (1997), Dispersion of CO2 injected into the ocean at the intermediate depth, Energy Convers. Manage., 38, 355360.
  • Ohgaki, K., Y. Makihara, and K. Takano (1993), Formation of CO2 hydrate in pure and sea waters, J. Chem. Eng., 26, 558564.
  • Ohsumi, T. (1993), Prediction of solute carbon dioxide behavior around a liquid carbon dioxide pool on deep ocean basin, Energy Convers. Manage., 33, 685690.
  • Ozaki, M., T. Ohsumi, and S. Masuda (1999), Dilution of released CO2 in MID ocean depth by moving ship, in Greenhouse Gas Control Technologies, edited by B. Eliasson, P. W. F. Riemer, and A. Wokaum, pp. 275280, Elsevier, New York.
  • Saji, A., H. Yoshida, M. Sakai, T. Tanii, T. Kamata, and H. Kitamura (1992), Fixation of carbon dioxide by hydrate-hydrate, Energy Convers. Manage., 33, 634649.
  • Sakai, H., T. Gamo, E.-S. Kim, T. Tsutsumi, T. Tanaka, J. Ishibashi, H. Wakita, M. Yamano, and T. Omori (1990), Venting of carbon dioxide-rich fluid and hydrate formation in Mid-Okinawa Trough Backare basin, Science, 248, 10931096.
  • Sato, T. (2003), Modeling of biological impact in direct injection of carbon dioxide in the ocean, in Greenhouse Gas Control Technology, edited by J. Gale, and Y. Kaya, pp. 759764, Elsevier, New York.
  • Sato, T., and M. Sato (2000), Numerical simulation of LCO2 droplet plume in the deep ocean, in Proceedings of the 2000 ASME, vol. 2, edited by D. Stock, pp. 911917, Am. Soc. of Mech. Eng., New. York.
  • Shindo, Y., Y. Fujioka, Y. Yanagisawa, T. Hakuta, and H. Komiyama (1995), Formation and stability of CO2 hydrate, in Direct Ocean Disposal of Carbon Dioxide, edited by N. Handa, and T. Ohsumi, pp. 217231, Terra. Sci., Tokyo.
  • Sirignano, W. A. (1986), The formulation of spray combustion models' resolution compared to droplet spacing, J. Heat Transfer, 108, 633639.
  • Sirignano, W. A. (1993), Fluid dynamics of sprays—1992 Freeman scholar lecture, J. Fluids Eng., 115, 345378.
  • Smagorinsky, J. (1993), Some historical remarks on the use of nonlinear viscosities, in Large Eddy Simulation of Complex Engineering and Geophysical Flows, edited by B. Galperin, and S. Orszag, pp. 154, Cambridge Univ. Press, New York.
  • Socolofsky, S. A. (2001), Laboratory experiments of multi-phase plumes in stratification and crossflow, Ph.D. thesis, Dep. of Civil and Environ. Eng., Mass. Inst. of Technol., Cambridge.
  • Song, Y., M. Nishio, B. Chen, S. Someya, T. Uchida, and M. Akai (2002), Measurement of the density of CO2 solution by Mach-Zehnder Interferometry, Ann. N. Y. Acad. Sci., 972, 206212.
  • Thorkildsen, F., and G. Alendal (1997), LES study of flow around a CO2 droplet plume in the ocean, Energy Convers. Manage., 38, S361S366.
  • Turner, J. S. (1973), Buoyancy Effects in Fluids, Cambridge Univ. Press, New York.
  • United Nations Educational, Scientific and Cultural Organization (1981), Tenth report of the joint panel on oceanographic tables and standards, Tech. Pap. Mar. Sci. 36, Paris.
  • van Doormal, J. P., and G. D. Raithby (1984), Enhancement of the SIMPLE method for predicting incompressible fluid flows, Numer. Heat Trans., 7, 147163.
  • Watanabe, Y. H. (2000), Western Pacific environment assessment study on CO2 ocean sequestration for mitigation of climate change, in Annual Report of Kansai Environmental Engineering Center, Japan, pp. 2537, Kansai Environ. Eng. Cent., Japan.
  • Weiss, R. F. (1974), Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem., 2, 203215.
  • Yamasaki, A., M. Wakatsuki, H. Teng, Y. Yanagisawa, and K. Yamada (2000), A new ocean disposal scenario for anthropogenic CO2: CO2 hydrate formation in a submerged crystallizer and its disposal, Energy, 25, 8596.