SEARCH

SEARCH BY CITATION

References

  • Barry, J. P. (2003), Deep-sea field experiments on the biological impacts of direct deep-sea CO2 injection, in Proceedings of the Second Annual Conference on Carbon Sequestration, pp. 17, U.S. Dep. of Energy, Alexandria, Va.
  • Bolin, B., J. Canadell, B. Moore III, I. Noble, and W. Steffen (1999), Effect on the biosphere of elevated atmospheric CO2, Science, 285, 18511852.
  • Bradshaw, A. L., P. G. Brewer, D. K. Shafer, and R. T. Williams (1981), Measurements of total carbon dioxide and alkalinity by potentiometric titration in the Geosecs program, Earth Planet. Sci. Lett., 55, 99115.
  • Brewer, P. G. (1978), Direct observation of the oceanic CO2 increase, Geophys. Res. Lett., 5, 9971000.
  • Brewer, P. G. (1997), Ocean chemistry of the fossil fuel CO2 signal: The haline signature of “Business as Usual”, Geophys. Res. Lett., 24, 13671369.
  • Brewer, P. G., G. Friederich, E. T. Peltzer, and F. M. Orr Jr. (1999), Direct experiments on the ocean disposal of fossil fuel CO2, Science, 284, 943945.
  • Brewer, P. G., E. T. Peltzer, G. Friederich, and G. Rehder (2002), Experimental determination of the fate of rising CO2 droplets in seawater, Environ. Sci. Technol., 36, 54415446.
  • Brewer, P. G., G. Malby, J. D. Pasteris, S. N. White, E. T. Peltzer, B. Wopenka, J. Freeman, and M. O. Brown (2004), Development of a laser Raman spectrometer for deep-ocean science, Deep Sea Res., Part I, 51, 739753.
  • Brewer, P. G., E. T. Peltzer, P. Walz, I. Aya, K. Yamane, R. Kojima, Y. Nakajima, N. Nakayama, P. Haugan, and T. Johannessen (2005), Deep Ocean Experiments with fossil fuel carbon dioxide: Creation and sensing of a controlled plume at 4 km depth, J. Mar. Res., 63, 933.
  • Caldeira, K., and M. Wickett (2003), Anthropogenic carbon and ocean pH, Nature, 425, 365.
  • Callendar, G. S. (1938), The artificial production of carbon dioxide and its influence on temperature, Q. J. R. Meteorol. Soc., 64, 223240.
  • DeLucia, E. H., et al. (1999), Net primary production of a forest ecosystem with experimental CO2 enrichment, Science, 284, 11771179.
  • Dyrssen, D., and L. G. Sillen (1967), Alkalinity and total carbonate in sea water: A plea for p-T-independent data, Tellus, Ser. B, 19, 113121.
  • Fan, S., M. Gloor, J. Mahlman, S. Pacala, J. Sarmiento, T. Takashi, and P. Tans (1998), A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models, Science, 282, 442446.
  • Gruber, N., J. L. Sarmiento, and T. F. Stocker (1996), An improved method for detecting anthropogenic CO2 in the oceans, Global Biogeochem. Cycles, 10, 809837.
  • Haugan, P., and H. Drange (1996), Effects of CO2 on the ocean environment, Energy Convers. Manage., 37, 10191022.
  • Holland, E. A., and S. Brown (1999), North American carbon sink, Science, 283, 1815.
  • Intergovernmental Panel on Climate Change (IPCC) (1990), Climate Change: The IPCC Scientific Assessment, 364 pp., Cambridge Univ. Press, New York.
  • Intergovernmental Panel on Climate Change (IPCC) (1995), Climate Change 1995: The Science of Climate Change, 372 pp., Cambridge Univ. Press, New York.
  • Johnson, K. S. (1982), Carbon dioxide hydration and dehydration kinetics in sea water, Limnol. Oceanogr., 27, 849855.
  • Jonsson, B., G. Karlstrom, H. Wennerstrom, S. Forsen, B. Roos, and J. Almlof (1977), Ab initio molecular orbital calculations on the water-carbon dioxide system: Reaction pathway for H2O + CO2 [RIGHTWARDS ARROW] H2CO3, J. Am. Chem. Soc., 99, 46284632.
  • Jonsson, B., G. Karlsrom, and H. Wennerstrom (1978), Ab initio molecular orbital calculations on the water-carbon dioxide system: The reaction OH + CO2 [RIGHTWARDS ARROW] HCO3, J. Am. Chem. Soc., 100, 16581661.
  • Kleinberg, R. L., C. Flaum, D. D. Griffin, P. G. Brewer, G. E. Malby, E. T. Peltzer, and J. P. Yesinowski (2003), Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability, J. Geophys. Res., 108(B10), 2508, doi:10.1029/2003JB002389.
  • Kleypas, J. A., R. W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon, and B. N. Opdyke (1999), Geochemical consequences of increased atmospheric carbon dioxide on coral reefs, Science, 284, 118120.
  • Langdon, C., T. Takahashi, C. Sweeney, D. Chipman, J. Goddard, F. Marubini, H. Aceves, H. Barnett, and M. J. Atkinson (2000), Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef, Global Biogeochem. Cycles, 14, 639654.
  • Magid, E., and B. O. Turbeck (1968), The rate of spontaneous hydration of CO2 and the reciprocal reaction in neutral aqueous solutions between 0° and 38°, Biochim. Biophys. Acta, 165, 515524.
  • Pasteris, J. D., B. Wopenka, J. J. Freeman, P. G. Brewer, S. N. White, E. T. Peltzer, and G. Malby (2004), Raman spectroscopy in the deep ocean: Successes and challenges, Appl. Spectrosc., 58, 195208.
  • Potter, C. S., and S. Klooster (1999), North American carbon sink, Science, 283, 1815.
  • Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe, and F. Morel (2000), Reduced calcification of marine plankton in response to increased atmospheric CO2, Nature, 407, 364367.
  • Shirayama, Y. (1997), Biodiversity and biological impact of ocean disposal of carbon dioxide, Waste Manage., 17, 381384.
  • Soli, A. L., and R. H. Byrne (2002), CO2 system hydration and dehydration kinetics and the equilibrium CO2/H2CO3 in aqueous NaCl solution, Mar. Chem., 78, 6573.
  • Zeebe, R., and D. Wolf-Gladrow (2001), CO2in Seawater: Equilibrium, Kinetics, Isotopes, Elsevier Oceanogr. Ser., vol. 65, 346 pp., Elsevier, New York.
  • Zeebe, R. E., D. A. Wolf-Gladrow, and H. Jansen (1999), On the time required to establish chemical and isotopic equilibrium in the carbon dioxide system in sea water, Mar. Chem., 65, 135153.
  • Zondervan, I., R. E. Zeebe, B. Rost, and U. Riebesell (2001), Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2, Global Biogeochem. Cycles, 15, 507516.