SEARCH

SEARCH BY CITATION

References

  • Archer, D., H. Kheshgi, and E. Maier-Reimer (1997), Multiple timescales for neutralization of fossil fuel CO2, Geophys. Res. Lett., 24, 405408.
  • Archer, D., H. Kheshgi, and E. Maier-Reimer (1998), Dynamics of fossil fuel neutralization by marine CaCO3, Global Biogeochem. Cycles, 12, 259276.
  • Bacastow, R., and C. D. Keeling (1973), Atmospheric carbon dioxide and radio-carbon in the natural carbon cycle. II: Changes from A. D. 1700 to 2070 as deduced from a geochemical model, in Carbon in the Biosphere, AEC Symp. Ser., vol. 30, edited by G. M. Woodwell, and E. V. Pecan, pp. 86136, NTIS U. S. Dep. of Commerce, Springfield, Va.
  • Bolin, B., and E. Eriksson (1959), Changes in the carbon dioxide content of the atmosphere and the sea due to fossil fuel combustion, in The Atmosphere and the Sea in Motion, pp. 130142, Rockefeller Inst. Press, New York.
  • Brewer, P. G. (1997), Ocean chemistry of the fossil fuel CO2 signal: The haline signal of “business as usual,”, Geophys. Res. Lett., 24, 13671369.
  • Broecker, W. S., Y.-H. Li, and T.-H. Peng (1971), Carbon dioxide: Man's unseen artifact, in Impingement of Man on the Oceans, edited by D. W. Hood, pp. 287324, Wiley Intersci., Hoboken, N. J.
  • Caldeira, K., and P. B. Duffy (2000), The role of the Southern Ocean in uptake and storage of anthropogenic carbon dioxide, Science, 287, 620622.
  • Caldeira, K., and G. H. Rau (2000), Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: Geochemical implications, Geophys. Res. Lett., 27, 225228.
  • Caldeira, K., and M. E. Wickett (2003), Anthropogenic carbon and ocean pH, Nature, 425, 365365.
  • Caldeira, K., M. E. Wickett, and P. B. Duffy (2002), Depth, radiocarbon, and the effectiveness of direct CO2 injection as an ocean carbon sequestration strategy, Geophys. Res. Lett., 29(16), 1766, doi:10.1029/2001GL014234.
  • Caldeira, K., G. Morgan, D. Baldocchi, P. Brewer, C. T. A. Chen, G.-J. Nabuurs, N. Nakicenovic, and G. P. Robertson (2004), A portfolio of carbon management options, in The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, SCOPE, vol. 62, edited by C. B. Field, pp. 103130, Island Press, Washington, D. C.
  • Dickson, A. (1994), Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Seawater, SOP 3, pp. 2526, U.S. Dep. of Energy, Washington, D. C.
  • Fairhall, A. W. (1973), Accumulation of fossil CO2 in the atmosphere and the sea, Nature, 245, 2023.
  • Feely, R. A., C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and F. J. Millero (2004), Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science, 305, 362366.
  • Gattuso, J.-P., D. Allemand, and M. Frankignoulle (1999), Interactions between the carbon and carbonate cycles at organism and community levels in coral reefs: A review on processes, rates and environmental control, Am. Zool., 39, 160183.
  • Haugan, P. M., and H. Drange (1996), Effects of CO2 on the ocean environment, Energy Convers. Manage., 37, 10191022.
  • Heinze, C. (2004), Simulating oceanic CaCO3 export production in the greenhouse, Geophys. Res. Lett., 31, L16308, doi:10.1029/2004GL020613.
  • Herzog, H., K. Caldeira, and E. Adams (2001), Carbon sequestration via direct injection, in Encyclopedia of Ocean Sciences, vol. 1, edited by J. H. Steele, S. A. Thorpe, and K. K. Turekian, pp. 408414, Elsevier, New York.
  • Hoffert, M. I., Y.-C. Wey, A. J. Callegari, and W. S. Broecker (1979), Atmospheric response to deep-sea injections of fossil-fuel carbon dioxide, Clim. Change, 2, 5368.
  • Hoffert, M. I., et al. (1998), Energy implications of future stabilization of atmospheric CO2 content, Nature, 395, 881884.
  • Hoffert, M. I., et al. (2002), Advanced technology paths to global climate stability: Energy for a greenhouse planet, Science, 295, 981987.
  • Intergovernmental Panel on Climatic Change (IPCC) (2000), Special Report on Emissions Scenarios, Working Group III, Intergovernmental Panel on Climate Change, edited by N. Nakicenovic et al., 595 pp., Cambridge Univ. Press, New York.
  • Intergovernmental Panel on Climatic Change (IPCC) (2001), Third Assessment Report of Working Group III, Mitigation, edited by B. Metz et al., 752 pp., Cambridge Univ. Press, New York.
  • Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437471.
  • Keith, D. W., and M. Ha-Duong (2003), CO2 capture from the air: Technology assessment and implications for climate policy, in Proceedings of the 6th Greenhouse Gas Control Conference, Kyoto, Japan, edited by J. Gale, and Y. Kaya, pp. 187197, Elsevier, New York.
  • Key, R. M., A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. Millero, C. Mordy, and T.-H. Peng (2004), A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.
  • Kheshgi, H. S. (1995), Sequestering atmospheric carbon dioxide by increasing ocean alkalinity, Energy Int. J., 20, 915922.
  • Kleypas, J. A., R. W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon, and B. N. Opdyke (1999), Geochemical consequences of increased atmospheric CO2 on coral reefs, Science, 284, 118120.
  • Kurihara, H., S. Shimode, and Y. Shirayama (2004), Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins, J. Oceanogr., 60, 743750.
  • Langdon, C., W. S. Broecker, D. E. Hammond, E. Glenn, K. Fitzsimmons, S. G. Nelson, T.-S. Peng, I. Hajdas, and G. Bonani (2003), Effect of elevated CO2 on the community metabolism of an experimental coral reef, Global Biogeochem. Cycles, 17(1), 1011, doi:10.1029/2002GB001941.
  • Le Quéré, C., et al. (2003), Two decades of ocean CO2 sink and variability, Tellus, Ser. B, 55, 649656.
  • Levitus, S., R. Burgett, and T. P. Boyer (1994), World Ocean Atlas 1994, vol. 3, Salinity, NOAA Atlas NESDIS 3, 111 pp., Natl. Oceanic and Atmos. Admin., Silver Spring, Md.
  • Marchetti, C. (1991), Branching out into the universe, in Diffusion of Technologies and Social Behavior, edited by N. Nakicenovic, and A. Grübler, pp. 583592, Springer, New York.
  • Oberhuber, J. M. (1993), Simulation of the Atlantic circulation with a coupled sea-ice mixed layer-isopycnal general circulation model. Part I: Model description, J. Phys. Oceanogr., 13, 808829.
  • Orr, J. C.,et al. (2004), Narrowing the uncertainty for deep ocean injection efficiency, in Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, edited by E. S. Rubin, D. W. Keith, and C. F. Gilboy, IEA Greenhouse Gas Prog., Vancouver, B. C., Canada.
  • Pacala, S., and R. Socolow (2004), Stabilization wedges: Solving the climate problem for the next 50 years with current technologies, Science, 305, 968972.
  • Plattner, G.-K., F. Joos, and T. F. Stocker (2002), Revision of the global carbon budget due to changing air-sea oxygen fluxes, Global Biogeochem. Cycles, 16(4), 1096, doi:10.1029/2001GB001746.
  • Pörtner, H. O., M. Langenbuch, and A. Reipschläger (2004), Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history? J. Oceanogr., 60, 705718.
  • Rau, G. H., and K. Caldeira (1999), Enhanced carbonate dissolution: A means of sequestering waste CO2 as ocean bicarbonate, Energy Conver. Manage., 40, 18031813.
  • Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe, and F. M. M. Morel (2000), Reduced calcification of marine plankton in response to increased atmospheric CO2, Nature, 407, 364367.
  • Sarmiento, J. L., T. M. C. Hughes, R. J. Stouffer, and S. Manabe (1998), Simulated response of the ocean carbon cycle to anthropogenic climate warming, Nature, 393, 245249.
  • Seibel, B. A., and P. J. Walsh (2001), Potential impacts of CO2 injections on deep-sea biota, Science, 294, 319320.
  • Smith, W. H. F., and D. T. Sandwell (1997), Global seafloor topography from satellite altimetry and ship depth soundings, Science, 277, 19571962.
  • Völker, C., D. W. R. Wallace, and D. A. Wolf-Gladrow (2002), On the role of heat fluxes in the uptake of anthropogenic carbon in the North Atlantic, Global Biogeochem. Cycles, 16(4), 1138, doi:10.1029/2002GB001897.
  • Whitfield, M. (1974), Accumulation of fossil CO2 in the atmosphere and the sea, Nature, 247, 523525.
  • Wickett, M. E., K. Caldeira, and P. B. Duffy (2003), Effect of horizontal grid resolution on simulations of oceanic CFC-11 uptake and direct injection of anthropogenic CO2, J. Geophys. Res., 108(C6), 3189, doi:10.1029/2001JC001130.
  • Wigley, T., R. Richels, and J. Edmonds (1996), Economic and environmental choices in the stabilization of atmospheric CO2 concentration, Nature, 379, 242245.
  • Wolf-Gladrow, D. A., U. Riebesell, S. Burkhardt, and J. Bijma (1999), Direct effects of CO2 concentration on growth and isotopic composition of marine plankton, Tellus, Ser. B, 51, 461476.
  • Zeebe, R. E., and D. A. Wolf-Gladrow (2001), Seawater: Equilibrium, Kinetics, Isotopes, Elsevier Oceanogr. Ser., vol. 65, Elsevier, New York.
  • Zondervan, I., R. E. Zeebe, B. Rost, and U. Riebesell (2001), Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2, Global Biogeochem. Cycles, 15, 507516.