SEARCH

SEARCH BY CITATION

References

  • Binkowski, F. S. (1979), A simple semi-empirical theory for turbulence in the atmospheric surface layer, Atmos. Environ., 13, 247253.
  • Briggs, G. A. (1969), Plume rise, Crit. Rev. Ser. T/D 25075, U.S. At. Energy Comm., Washington, D. C. (Available from Natl. Tech. Inf. Serv., Springfield, Va.).
  • Briggs, G. A. (1971), Some recent analyses of plume rise observations, in Proceedings of the Second International Clean Air Congress, edited by H. M. Englund, and W. T. Beery, pp. 10291032, Elsevier, New York.
  • Briggs, G. A. (1974), Diffusion estimation for small emissions, in Environmental Research Laboratories Air Resources Atmospheric Turbulence and Diffusion Laboratory 1973 Annual Report, USAEC Rep. ATDL-106, NOAA, Washington, D. C.
  • Cooper, D. W. (1982), Receptor-oriented source-receptor analysis, paper presented at Specialty Conference on Receptor Models Applied to Contemporary Pollution Problems, Northeast Atl. Int. Sect. of the Air Pollut. Control Assoc., Danvers, Mass., 17 – 20 Oct.
  • Draxler, R. R. (1976), Determination of atmospheric diffusion parameters, Atmos. Environ., 10, 99105.
  • Gifford, F. A. (1961), Use of routine meteorological observations for estimating, atmospheric dispersion, Nucl. Safety, 2, 4751.
  • Gordon, G. E. (1988), Receptor models, Environ. Sci. Technol., 22, 11321142.
  • Hanna, S. R. (1988), Air quality model evaluation and uncertainty, JAPCA, 38, 406412.
  • Hanna, S. R., R. Britter, and P. Franzese (2003), A baseline urban dispersion model evaluated with Salt Lake City and Los Angeles tracer data, Atmos. Environ., 37, 50695082.
  • Henry, R. C. (1987), Current factor analysis models are ill-posed, Atmos. Environ., 21, 18151820.
  • Henry, R. C. (2000), UNMIX theory and applications, in Final Report of Workshop on UNMIX and PMF as Applied to PM2.5, Publ. EPA/600/A-00/48, edited by R. D. Willis, pp. 46, U.S. Environ. Prot. Agency, Washington, D. C.
  • Henry, R. C., and G. A. Norris (2002), EPA UNMIX 2.3 User Guide, Natl. Exposure Res. Lab., U.S. Environ. Prot. Agency, Research Triangle Park, N. C.
  • Henry, R. C., E. S. Park, and C. H. Spiegelman (1999), Comparing a new algorithm with the classical methods for estimating the number of factors, Chemom. Intel. Lab. Syst., 48, 9197.
  • Irwin, J. S. (1979), Scheme for estimating dispersion parameters as a function of release height, Publ. EPA-600/4-79-062, U.S. Environ. Prot. Agency, Washington, D. C.
  • Kidwell, C. B., and J. M. Ondov (2001), Development and evaluation of a prototype system for collecting sub-hourly ambient aerosol for chemical analysis, Aerosol Sci. Technol., 35, 596601.
  • Kidwell, C. B., and J. M. Ondov (2004), Elemental analysis of sub-hourly ambient aerosol collections, Aerosol Sci. Technol., 38, 205218.
  • Kim, B. M., and R. C. Henry (2000), Application of the SAFER model to Los Angeles PM10 data, Atmos. Environ., 34, 17471759.
  • Kumar, A., J. Luo, and G. Bennett (1993), Statistical evaluation of lower flammability distance (LFD) using four hazardous release models, Process Safety Prog., 12, 111.
  • Kumar, A., N. K. Bellam, and A. Sud (1999), Performance of an industrial source complex model: Predicting long-term concentrations in an urban area, Environ. Prog., 18, 93100.
  • Lioy, P. J., M. P. Zelenka, M. D. Cheng, N. M. Reiss, and W. E. Wilson (1989), The effect of sampling duration of the ability to resolve source types using factor analysis, Atmos. Environ., 23, 239254.
  • Londergan, R. J., and D. J. Wackter (1984), Evaluation of complex terrain air quality simulation models, Publ. EPA-450-4-84-017, U.S. Environ. Prot. Agency, Research Triangle Park, N. C.
  • Londergan, R. J., D. H. Minott, D. J. Wackter, and R. R. Fizz (1983), Evaluation of urban air quality simulation models, Publ. EPA-450-4-83-020, U.S. Environ. Prot. Agency, Research Triangle Park, N. C.
  • Ondov, J. M., R. C. Ragaini, and A. H. Biermann (1979), Elemental emissions from a coal-fired power plant: Comparison of a Venturi wet scrubber system with a cold-side electrostatic precipitator, Environ. Sci. Technol., 13, 598607.
  • Ondov, J. M., C. E. Choquette, W. H. Zoller, G. E. Gordon, A. H. Biermann, and R. E. Heft (1989), Atmospheric behavior of trace elements on particles emitted from a coal-fired power plant, Atmos. Environ., 23, 21932204.
  • Ondov, J. M., W. R. Kelly, J. Z. Holland, Z. Lin, and S. A. Wight (1992), Tracing fly ash emitted from a coal-fired power plant with enriched rare-earth isotopes, Atmos. Environ., Part B, 26, 453462.
  • Ondov, J. M., J. P. Pancras, S. Gazula, M. Yu, J. Turner, A. Robinson, S. Pandis, N. D. Poor, and R. K. Stevens (2003), Highly time-resolved measurements of elemental composition at the Baltimore, St. Louis, Pittsburgh, and Tampa Supersites using the UM high-frequency aerosol slurry sampler: Unprecedented resolution of the sources of primary atmospheric aerosol, paper presented at 2003 PM AAAR Meeting, Am. Assoc. for Aerosol Res., Pittsburgh, Pa., 31 March to 4 April.
  • Paatero, P. (1997), Least square formulation of robust non-negative factor analysis, Chemom. Intel. Lab. Syst., 37, 2335.
  • Paatero, P. (1999), The multilinear engine: A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model, J. Comput. Graph. Stat., 8, 854888.
  • Pancras, J. P. (2005), Multielement electrothermal AAS determination of eleven marker elements in fine ambient aerosol slurry samples collected with SEAS-II, Anal. Chim. Acta., in press.
  • Panofsky, H. A., A. K. Blackadar, and G. E. McVehil (1960), The diabatic wind profile, Q. J. R. Meteorol. Soc., 86, 390398.
  • Pasquill, F. (1961), The estimation of the dispersion of windborne material, Meteorol. Mag., 90, 3349.
  • Patel, V. C., and A. Kumar (1998), Evaluation of three air dispersion models: ISCT2, ISCLT2, and SCREEN2 for mercury emissions in an urban area, Environ. Monit. Assess., 53, 259277.
  • Poor, N., C. Amalfilano, J. Ondov, P. Pancras, S. Gazula, P. Dasgupta, and R. Al-Horr (2003), Real-time monitoring of gases and aerosols reveals source contributions, paper presented at NARSTO Workshop on Innovative Methods for Emission-Inventory Development and Evaluation, NARSTO, Austin, Tex., 14 – 17 Oct.
  • Rheingrover, S. W., and G. E. Gordon (1988), Wind-trajectory method for determining compositions of particles from major air pollution sources, Aerosol Sci. Technol., 8, 2961.
  • Schwede, D. B., and J. O. Paumier (1987), Sensitivity of the industrial source complex model to input deposition parameters, J. Appl. Meteorol., 36, 10961106.
  • Scire, J. S., R. R. Francoise, M. E. Fernau, and R. J. Yamartino (2000), A User'sGuide for the CALMET Meteorological Model (Version 5), Earth Tech, Inc., Concord, Mass.
  • Thurston, G. D., and J. D. Spengler (1985), A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston, Atmos. Environ., 19, 925.
  • U.S. Environmental Protection Agency (U.S. EPA) (1980), Guidelines on air quality models, OAQPS Guideline Ser., Research Triangle Park, N. C.
  • U.S. Environmental Protection Agency (U.S. EPA) (1995), User'sGuide for the Industrial Source Complex (ISC3) Dispersion Models, vol. II, Description of Model Algorithms, Research Triangle Park, N. C.
  • Wahlin, P. (2003), COPREM: A multivariate receptor model with a physical approach, Atmos. Environ., 37, 48614867.
  • Yamartino, R. J. (1982), Formulation and application of a hybrid receptor model, paper presented at Specialty Conference on Receptor Models Applied to Contemporary Pollution Problems, Northeast Atl. Int. Sect. of the Air Pollut. Control Assoc., Danvers, Mass., 17 – 20 Oct.