SEARCH

SEARCH BY CITATION

References

  • Ashbaugh, L. L., W. C. Malm, and W. Z. Sadeh (1985), A residence time probability analysis of sulfur concentrations at Grand Canyon National Park, Atmos. Environ., 19, 12631270.
  • Birmili, W., A. Wiedensohler, J. Heintzenberg, and K. Lehmann (2001), Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology, J. Geophys. Res., 106, 32,00532,018.
  • Brunekreef, B., D. W. Dockery, and M. Krzyzanowski (1995), Epidemiologic studies of short-term effects of low levels of major ambient air pollution components, Environ. Health Perspect., 103, 313.
  • Chueinta, W., P. K. Hopke, and P. Paatero (2000), Investigation of sources of atmospheric aerosol at urban and suburban residential area in Thailand by positive matrix factorization, Atmos. Environ., 34, 33193329.
  • Dockery, D. W., and C. A. Pope III (1994), Acute respiratory effects of particulate air pollution, Annu. Rev. Public Health, 15, 107132.
  • Green, M., H. Kuhns, M. Pitchford, R. Dietz, L. Ashbaugh, and T. Watson (2003), Application of the tracer-aerosol gradient interpretive technique to sulfur attribution for the Big Bend Regional Aerosol and Visibility Observational Study, J. Air Waste Manage. Assoc., 53, 586595.
  • Henry, R. C. (2003), Multivariate receptor modeling by N-dimensional edge detection, Chemom. Intell. Lab. Syst., 65, 179189.
  • Hussein, T., A. Puustinen, P. P. Aalto, J. M. Makela, K. Hameri, and M. Kulmala (2004), Urban aerosol number size distributions, Atmos. Chem. Phys., 4, 391411.
  • Khlystov, A., C. Stanier, and S. N. Pandis (2004), An algorithm for combining electrical mobility and aerodynamic size distributions when measuring ambient aerosol, Aerosol Sci. Technol., 38, 229238.
  • Kim, E., P. K. Hopke, T. V. Larson, and D. S. Covert (2004), Analysis of ambient particle size distributions using UNMIX and positive matrix factorization, Environ. Sci. Technol., 38, 202209.
  • Kim, S., S. Shen, C. Sioutas, Y. Zhu, and W. C. Hinds (2002), Size distribution and diurnal and seasonal trends of ultrafine particles in source and receptor sites of the Los Angeles Basin, J. Air Waste Manage. Assoc., 52, 297307.
  • Kulmala, M., H. Vehkamaki, T. Petajda, M. Dal Maso, A. Lauri, V. M. Kerminen, W. Birmili, and P. H. McMurry (2004), Formation and growth rates of ultrafine atmospheric particles: A review of observations, J. Aerosol. Sci., 35(2), 143176.
  • Lee, E., C. K. Chun, and P. Paatero (1999), Application of positive matrix factorization in source apportionment of particulate pollutants, Atmos. Environ., 33, 32013212.
  • Mäkelä, J. M., E. K. Koponen, P. Aalto, and M. Kulmala (2000), One-year data of submicron size modes of tropospheric background aerosol in southern Finland, J. Aerosol. Sci., 31(5), 595611.
  • Paatero, P. (1997), Least squares formulation of robust, non-negative factor analysis, Chemom. Intell. Lab. Syst., 37, 2355.
  • Paatero, P., P. K. Hopke, X. H. Song, and Z. Ramadan (2002), Understanding and controlling rotations in factor analytic models, Chemom. Intell. Lab. Syst., 60, 253264.
  • Paatero, P., P. K. Hopke, B. A. Begum, and S. K. Biswas (2005), A graphical diagnostic method for assessing the rotation in factor analytical models of atmospheric pollution, Atmos. Environ., 39, 193201.
  • Polissar, A. V., P. K. Hopke, and R. L. Poirot (2001), Atmospheric aerosol over Vermont: Chemical composition and sources, Environ. Sci. Technol., 35, 46044621.
  • Pope, C. A.III, D. W. Dockery, and J. Schwartz (1995), Review of epidemiological evidence of health effects of particulate air pollution, Inhalation Toxicol., 7, 118.
  • Raes, F., R. Van Dingenen, E. Cuegas, P. F. J. Van Velthoven, and J. M. Prospero (1997), Observations of aerosols in the free troposphere and marine boundary layer of the subtropical northeast Atlantic: Discussion of processes determining their size distribution, J. Geophys. Res., 102, 21,31521,318.
  • Ramadan, Z., X. H. Song, and P. K. Hopke (2000), Identification of sources of Phoenix aerosol by positive matrix factorization, J. Air Waste Manage. Assoc., 50, 13081320.
  • Ruuskanen, J., et al. (2001), Concentrations of ultrafine, fine and PM2.5 particles in three European cities, Atmos. Environ., 35, 37293738.
  • Song, X. H., A. V. Polissar, and P. K. Hopke (2001), Source of fine particle composition in the northeastern U.S. Atmos. Environ., 35, 52775286.
  • Stanier, C., A. Khlystov, W. R. Chan, M. Mandiro, and S. N. Pandis (2004a), A method for the in-situ measurement of fine aerosol water content of ambient aerosol: The Dry-Ambient Aerosol Spectrometer (DAASS), Aerosol Sci. Technol., 38, Suppl. 1, 215228.
  • Stanier, C., A. Khlystov, and S. N. Pandis (2004b), Nucleation events during the Pittsburgh Air Quality Study: Description and relation to key meteorological, gas phase, and aerosol parameters, Aerosol Sci. Technol., 38, Suppl. 1, 253264.
  • Stanier, C., A. Khlystov, and S. N. Pandis (2004c), Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS), Atmos. Environ., 38, 32753284.
  • van Bree, L., and F. R. Cassee (2000), A critical review of potentially causative PM properties and mechanisms associated with health effects, RIVM Rapp. 650010015, Natl. Inst. of Public Health and the Environ., Bilthoven, Netherlands.
  • Wahlin, P., F. Palmgren, R. V. Dingenen, and F. Raes (2001), Experimental studies of ultrafine particles in streets and the relationship to traffic, Atmos. Environ., 35, Suppl. 1, S63S69.
  • Whitby, K. T. (1978), The physical characteristics of sulfur aerosols, Atmos. Environ., 12, 135159.
  • Wittig, B., N. Anderson, A. Y. Khlystov, S. N. Pandis, C. Davidson, and A. L. Robinson (2003), Pittsburgh Air Quality Study overview and preliminary scientific findings, Atmos. Environ., 38, 31073125.
  • Xie, Y. L., P. K. Hopke, P. Paatero, L. A. Barrie, and S. M. Li (1999), Identification of source nature and seasonal variations of Arctic aerosol by positive matrix factorization, J. Atmos. Sci., 56, 249260.
  • Zhou, L., E. Kim, P. K. Hopke, C. Stanier, and S. N. Pandis (2003), Source apportionment using particle size distribution data from the Pittsburgh Air Quality Study (PAQS), paper presented at AAAR PM Conference, Am. Assoc. for Aerosol Res., Pittsburgh, April.
  • Zhou, L., E. Kim, P. K. Hopke, C. Stanier, and S. N. Pandis (2004), Advanced factor analysis on Pittsburgh particle size distribution data, Aerosol Sci. Technol., 38, Suppl. 1, 118132.
  • Zhou, L., P. K. Hopke, C. O. Stanier, S. N. Pandis, J. M. Ondov, and J. P. Pancras (2005), Investigation of the relationship between chemical composition and size distribution of airborne particles by partial least squares (PLS) and positive matrix factorization (PMF), J. Geophys. Res., D07S18, doi:10.1029/2004JD005050.
  • Zhu, Y., W. C. Hinds, S. Kim, S. Shen, and C. Sioutas (2002a), Study of ultrafine particles near a major highway with heavy-duty diesel traffic, Atmos. Environ., 36, 43234335.
  • Zhu, Y. F., W. C. Hinds, S. Kim, and C. Sioutas (2002b), Concentration and size distribution of ultrafine particles near a major highway, J. Air Waste Manage. Assoc., 52, 10321042.
  • Zhu, Y., W. C. Hinds, S. Shen, and C. Sioutas (2004), Seasonal trends of concentration and size distribution of ultrafine particles near major highways in Los Angeles, Aerosol Sci. Technol., 38, Suppl. 1, 513.