SEARCH

SEARCH BY CITATION

References

  • Bluestein, H. B., and M. L. Weisman (2000), The interaction of numerically simulated supercells initiated along lines, Mon. Weather Rev., 128, 31283149.
  • Cha, S.-H., and S. N. Srihari (2002), On measuring the distance between histograms, Pattern Recognition, 35, 13551370.
  • Efron, B., and R. Tibshirani (1993), An Introduction to the Bootstrap, 436 pp., CRC Press, Boca Raton, Fla.
  • Ferrier, B. S. (1994), A double-moment multiple-phase four-class bulk parameterization scheme, part I: Description, J. Atmos. Sci., 51, 249280.
  • Ferrier, B. S., W.-K. Tao, and J. Simpson (1995), A double-moment multiple-phase four-class bulk parameterization scheme, part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations, J. Atmos. Sci., 52, 10011033.
  • Fisher, B. L. (2004), Climatological validation of TRMM TMI and PR monthly rain products over Oklahoma, J. Appl. Meteorol., 43, 519535.
  • Fletcher, N. H. (1962), The Physics of Rain Clouds, 386 pp., Cambridge Univ. Press, New York.
  • Fu, Q. (1996), An accurate parameterization of the solar radiative properties of cirrus clouds for climate models, J. Clim., 9, 20582082.
  • Fu, Q., and K. N. Liou (1993), Parameterization of the radiative properties of cirrus clouds, J. Atmos. Sci., 50, 20082025.
  • Fu, Q., S. K. Krueger, and K. N. Liou (1995), Interactions of radiation and convection in simulated tropical cloud clusters, J. Atmos. Sci., 52, 13101328.
  • Fu, Q., P. Yang, and W. B. Sun (1998), An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models, J. Clim., 11, 22232237.
  • Hsie, E.-Y., R. D. Farley, and H. D. Orville (1980), Numerical simulation of ice-phase convective cloud seeding, J. Appl. Meteorol., 19, 950977.
  • Iguchi, T., T. Kozu, R. Meneghini, J. Awaka, and K. Okamoto (2000), Rain-profiling algorithm for the TRMM precipitation radar, J. Appl. Meteorol., 39, 20382052.
  • Klein, S. A., and C. Jakob (1999), Validation and sensitivities of frontal clouds simulated by the ECMWF model, Mon. Weather Rev., 127, 25142531.
  • Klemp, J. B., R. B. Wilhelmson, and P. S. Ray (1981), Observed and numerically simulated structure of a mature supercell thunderstorm, J. Atmos. Sci., 38, 15581580.
  • Koenig, L. R. (1971), Numerical modeling of ice deposition, J. Atmos. Sci., 28, 226237.
  • Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin (1995), Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection, J. Appl. Meteorol., 34, 281287.
  • Kummerow, C., W. Barnes, T. Kozu, J. Shuie, and J. Simpson (1998), The Tropical Rainfall Measuring Mission (TRMM) sensor package, J. Atmos. Oceanic Technol., 15, 809817.
  • Kummerow, C., et al. (2000), The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit, J. Appl. Meteorol., 39, 19651982.
  • Kummerow, C., et al. (2001), The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors, J. Appl. Meteorol., 40, 18011820.
  • Lin, Y.-L., R. D. Farley, and H. D. Orville (1983), Bulk parameterization of the snow field in a cloud model, J. Clim. Appl. Meteorol., 22, 10651092.
  • McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong (1991), Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection, J. Appl. Meteorol., 30, 9851004.
  • Nachamkin, J. E. (2004), Mesoscale verification using meteorological composites, Mon. Weather Rev., 132, 941955.
  • Olson, W. S., P. Bauer, N. F. Viltard, D. E. Johnson, W.-K. Tao, R. Meneghini, and L. Liao (2001a), A melting-layer model for passive/active microwave remote sensing applications, part I: Model formulation and comparison with observations, J. Appl. Meteorol., 40, 11451163.
  • Olson, W. S., P. Bauer, C. D. Kummerow, Y. Hong, and W.-K. Tao (2001b), A melting-layer model for passive/active microwave remote sensing applications, Part II: Simulation of TRMM observations, J. Appl. Meteorol., 40, 11641179.
  • Parker, M. D., and R. H. Johnson (2004), Structures and dynamics of quasi-2D mesoscale convective systems, J. Atmos. Sci., 61, 545567.
  • Randall, D. A., K.-M. Xu, R. J. C. Sommerville, and S. Iacobellis (1996), Single-column models and cloud ensembles as links between observations and climate models, J. Clim., 9, 16831697.
  • Randall, D. A., M. Khairoutdinov, A. Arakawa, and W. Grabowski (2003), Breaking the cloud-parameterization deadlock, Bull. Am. Meteorol. Soc., 84, 15471564.
  • Redelsperger, J.-L., et al. (2000), A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. I: Cloud-resolving models, Q. J. R. Meteorol. Soc., 115, 823864.
  • Ringler, T. D., R. P. Heikes, and D. A. Randall (2000), Modeling the atmospheric general circulation using a spherical geodesic grid: A new class of dynamical cores, Mon. Weather Rev., 128, 24712490.
  • Robe, F. R., and K. A. Emanuel (2001), The effect of vertical wind shear on radiative-convective equilibrium states, J. Atmos. Sci., 58, 14271445.
  • Skamarock, W. C., M. L. Weisman, and J. B. Klemp (1994), Three-dimensional evolution of simulated long-lived squall lines, J. Atmos. Sci., 51, 25632584.
  • Smith, P. L. (1984), Equivalent radar reflectivity factors for snow and ice particles, J. Clim. Appl. Meteorol., 23, 12581260.
  • Smith, P. L.Jr., C. G. Myers, and H. D. Orville (1975), Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation, J. Appl. Meteorol., 14, 11561165.
  • Tao, W.-K., and J. Simpson (1989), Modeling study of a tropical squall-type convective line, Mon. Weather Rev., 117, 177202.
  • Tao, W.-K., J. Simpson, and M. McCumber (1989), An ice-water saturation adjustment, J. Atmos. Sci., 46, 231235.
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper (1996), Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System experiment, Bull. Am. Meteorol. Soc., 77, 853868.
  • Wilks, D. S. (1997), Resampling hypothesis tests for autocorrelated fields, J. Clim., 10, 6582.
  • Xu, K.-M., and A. Arakawa (1992), Semi-prognostic tests of the Arakawa-Schubert cumulus parameterization using simulated data, J. Atmos. Sci., 49, 24212436.
  • Xu, K.-M., and S. K. Krueger (1991), Evaluation of cloudiness parameterizations using a cumulus ensemble model, Mon. Weather Rev., 119, 342367.
  • Xu, K.-M., and D. A. Randall (1996), Explicit simulation of cumulus ensembles with the GATE Phase III data: Comparison with observations, J. Atmos. Sci., 53, 37103736.
  • Xu, K.-M., and D. A. Randall (2000), Explicit simulation of midlatitude cumulus ensembles: Comparison with ARM data, J. Atmos. Sci., 57, 28392858.
  • Xu, K.-M., and D. A. Randall (2001), Explicit simulation of cumulus ensembles with the GATE Phase III data: Budgets of a composite easterly wave, Q. J. R. Meteorol. Soc., 127, 15711591.
  • Xu, K.-M., et al. (2002), An intercomparison of cloud-resolving models with the Atmospheric Radiation Measurement summer 1997 Intensive Observation Period data, Q. J. R. Meteorol. Soc., 128, 593624.
  • Xu, K.-M., T. Wong, B. A. Wielicki, L. Parker, and Z. A. Eitzen (2005), Statistical analyses of satellite cloud object data for large-ensemble evaluation of cloud models, part I: Methodology and preliminary results, J. Clim. in press.
  • Xue, M., K. K. Droegemeier, and V. Wong (2000), The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool, part I: Model dynamics and verification, Meteorol. Atmos. Physics., 75, 161193.
  • Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, K. Brewster, F. Carr, D. Weber, Y. Liu, and D.-H. Wang (2001), The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool, part II: Model physics and applications, Meteorol. Atmos. Phys., 76, 143165.
  • Yuter, S. E., and R. A. Houze Jr. (1995), Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus, part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity, Mon. Weather Rev., 123, 19411963.