SEARCH

SEARCH BY CITATION

References

  • Ackerman, T. P., and G. M. Stokes (2003), The Atmospheric Radiation Measurement Program, Phys. Today, 56, 3844.
  • Bechtold, P., et al. (2000), A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. Part II: Intercomparison of single-column models with a cloud-resolving model, Q. J. R. Meteorol. Soc., 126, 865888.
  • Beheng, K. D. (1994), A parameterization of warn cloud microphysical conversion processes, Atmos. Res., 33, 193206.
  • Bénard, P., J.-P. Redeslsperger, and J.-P. Lafore (1992), Nonhydrostatic simulation of frontogenesis in a moist atmosphere. Part I: General description and narrow rainbands, J. Atmos. Sci., 49, 22002217.
  • Berry, E. X. (1968), Modification of the warm rain process, in Proceedings of 1st National Conference on Weather Modification, pp. 8185, Am. Meteorol. Soc., Boston, Mass.
  • Bony, S., and K. A. Emanuel (2001), A parameterization of the cloudiness associated with cumulus convection: Evaluation using TOGA COARE data, J. Atmos. Sci., 58, 31583183.
  • Clark, T. L., W. D. Hall, and R. M. Banta (1994), Two- and three-dimensional simulations of the 9 January 1989 severe Boulder windstorm: Comparison with observations, J. Atmos. Sci., 51, 23172343.
  • Clothiaux, E. E., K. P. Moran, B. E. Martner, T. P. Ackerman, G. G. Mace, T. Uttal, J. H. Mather, K. B. Widener, M. A. Miller, and D. J. Rodriguez (1999), The Atmospheric Radiation Measurement program cloud radars: Operational modes, J. Atmos. Oceanic Technol., 16, 819827.
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill (1986), Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall, J. Clim. Appl. Meteorol., 25, 16581680.
  • Del Genio, A. D., M.-S. Yao, W. Kovari, and K. K.-W. Lo (1996), A prognostic cloud water parameterization for global climate models, J. Clim., 9, 270304.
  • Del Genio, A. D., W. Kovari, M.-S. Yao, and J. Jonas (2005), Cumulus microphysics and climate sensitivity, J. Clim., in press.
  • Dong, X., and G. G. Mace (2003), Profiles of low-level stratus cloud microphysics deduced from ground-based measurements, J. Atmos. Oceanic Technol., 20, 4253.
  • Fowler, L. D., D. A. Randall, and S. A. Rutledge (1996), Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes, J. Clim., 9, 489529.
  • Ghan, S. J., L. R. Leung, and Q. Hu (1997), Application of cloud microphysics to NCAR CCM2, J. Geophys. Res., 102, 16,50716,527.
  • Ghan, S. J., et al. (2000), An intercomparison of single column model simulations of summertime midlatitude continental convection, J. Geophys. Res., 105, 20912124.
  • Grabowski, W. W. (2001), Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP), J. Atmos. Sci., 58, 978997.
  • Iacobellis, S. F., G. M. McFarquhar, D. L. Mitchell, and R. J. C. Somerville (2003), The sensitivity of radiative fluxes to parameterized cloud microphysics, J. Clim., 16, 29792996.
  • Kessler, E. (1969), On the Distribution and Continuity of Water Substance in Atmospheric Circulation, Meteorol. Monogr. Ser., vol. 32, 84 pp., Am. Meteorol. Soc., Boston, Mass.
  • Khairoutdinov, M. F., and Y. Kogan (2000), A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus, Mon. Weather Rev., 118, 229243.
  • Khairoutdinov, M. F., and D. A. Randall (2001), A cloud-resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results, Geophys. Res. Lett., 28, 36173620.
  • Khairoutdinov, M., and D. A. Randall (2003), Cloud-resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties and sensitivities, J. Atmos. Sci., 60, 607625.
  • Klein, S. A., and C. Jakob (1999), Validation and sensitivities of frontal clouds simulated by the ECMWF model, Mon. Weather Rev., 127, 25142531.
  • Koenig, L. R., and F. W. Murray (1976), Ice-bearing cumulus cloud evolution: Numerical simulation and general comparison against observations, J. Appl. Meteorol., 15, 747762.
  • Krueger, S. K., Q. Fu, K.-N. Liou, and H.-N. Chin (1995), Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection, J. Appl. Meteorol., 34, 281287.
  • Lin, Y.-L., R. D. Farley, and H. D. Orville (1983), Bulk parameterization of the snow field in a cloud model, J. Clim. Appl. Meteorol., 22, 10651092.
  • Lohmann, U., and E. Roecker (1996), Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model, Clim. Dyn., 12, 557572.
  • Lohmann, U., J. Feichter, C. C. Chuang, and J. E. Penner (1999), Predicting the number of cloud droplets in the ECHAM GCM, J. Geophys. Res., 104, 91699198.
  • Manton, M. J., and W. R. Cotton (1977), Formulation of approximate equations for modeling moist deep convection on the mesoscale, Atmos. Sci. Pap. 266, Dept. of Atmos. Sci., Colo. State Univ., Fort Collins, Colo.
  • Miller, M. A., K. L. Johnson, M. P. Jensen, G. G. Mace, X. Dong, and A. M. Vogelmann (2004), A Continuous Baseline Microphysical Retrieval (MICROBASE): Status of SGP version 1.2 and prototype TWP version, paper presented at 14th ARM Science Team Meeting, Atmos. Radiat. Measure. Prog., Dept. of Energy, Albuquerque, N. M.
  • Moncrieff, M. W., S. K. Krueger, D. Gregory, J.-L. Redelsperger, and W.-K. Tao (1997), GEWEX Cloud System Study (GCSS) Working Group 4: Precipitating convective cloud systems, Bull. Am. Meteorol. Soc., 78, 831845.
  • Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener (1998), An unattended cloud-profiling radar for use in climate research, Bull. Am. Meteorol. Soc., 79, 443455.
  • Ovtchinnikov, M., and S. J. Ghan (2005), Parallel simulations of aerosol influence on clouds using cloud-resolving and single-column models, J. Geophys. Res., 110, D15S10, doi:10.1029/2004JD005088.
  • Petch, J. C., and J. Dudhia (1998), The importance of the horizontal advection of hydrometeors in a single-column model, J. Clim., 11, 24372452.
  • Randall, D. A., K.-M. Xu, R. C. J. Somerville, and S. Iacobellis (1996), Single-column models and cloud ensemble models as links between observations and climate models, J. Clim., 9, 16831697.
  • Rasch, P. J., and J. E. Kristjánsson (1998), A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations, J. Clim., 11, 15871614.
  • Redelsperger, J.-L., et al. (2000), A GCSS model intercomparison for a tropical squall line observed during TOGA-COARE. I: Cloud-resolving models, Q. J. R. Meteorol. Soc., 115, 823864.
  • Rotstayn, L. D. (1997), A physical based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes, Q. J. R. Meteorol. Soc., 123, 12271282.
  • Rotstayn, L. D., B. F. Ryan, and J. J. Katzfey (2000), A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models, Mon. Weather Rev., 128, 10701088.
  • Rutledge, S. A., and P. V. Hobbs (1984), The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands, J. Atmos. Sci., 41, 29492972.
  • Ryan, B. F., et al. (2000), Simulations of a cold front by cloud-resolving, limited-area, and large-scale models, and a model evaluation using in situ and satellite observations, Mon. Weather Rev., 128, 31283135.
  • Simpson, J., and V. Wiggert (1969), Models of precipitating cumulus towers, Mon. Weather Rev., 97, 471489.
  • Smith, R. N. B. (1990), A scheme for predicting layer clouds and their water content in a GCM, Q. J. R. Meteorol. Soc., 113, 435460.
  • Stokes, G. M., and S. E. Schwartz (1994), The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed, Bull. Am. Meteorol. Soc., 75, 12021221.
  • Sud, Y. C., and G. K. Walker (1999), Microphysics of clouds with the relaxed Arakawa-Schubert scheme (McRAS). Part I, Design and evaluation with GATE Phase III data, J. Atmos. Sci., 56, 31963220.
  • Sundqvist, H. (1978), A parameterization scheme for non-convective condensation including prediction of cloud water content, Q. J. R. Meteorol. Soc., 104, 677690.
  • Sundqvist, H., E. Berge, and J. E. Kristjánsson (1989), Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model, Mon. Weather Rev., 117, 16411657.
  • Tiedtke, M. (1993), Representation of clouds in large-scale models, Mon. Weather Rev., 121, 30403061.
  • Tompkins, A. M. (2002), A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale model and its use to diagnose cloud cover, J. Atmos. Sci., 59, 19171942.
  • Xie, S., et al. (2002), Intercomparison and evaluation of GCM cumulus parameterizations under summertime midlatitude continental conditions, Q. J. R. Meteorol. Soc., 128, 10951135.
  • Xie, S., et al. (2005), Simulations of midlatitude frontal clouds by single-column and cloud-resolving models during the Atmospheric Radiation Measurement March 2000 cloud intensive operational period, J. Geophys. Res., 110, D15S03, doi:10.1029/2004JD005119.
  • Xu, K.-M., and D. A. Randall (1996), A semiempirical cloudiness parameterization for use in climate models, J. Atmos. Sci., 58, 30843102.
  • Xu, K.-M., et al. (2002), An intercomparison of cloud-resolving models with the Atmospheric Radiation Measurement summer 1997 IOP data, Q. J. R. Meteorol. Soc., 128, 593624.
  • Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, K. Brester, F. Carr, D. Weber, Y. Liu, and D.-H. Wang (2001), The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and application, Meteorol. Atmos. Phys., 76, 143165.
  • Zhang, M., and J. L. Lin (1997), Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements, J. Atmos. Sci., 54, 15031524.
  • Zhang, M., J. L. Lin, R. T. Cederwall, J. J. Yio, and S. C. Xie (2001), Objective analysis of ARM IOP data: Method, feature and sensitivity, Mon. Weather Rev., 129, 295311.
  • Zhang, M., W. Lin, C. S. Bretherton, J. J. Hack, and P. J. Rasch (2003), A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model (CAM2), J. Geophys. Res., 108(D1), 4035, doi:10.1029/2002JD002523.