SEARCH

SEARCH BY CITATION

References

  • Anderson, T. W. (1984), An Introduction to Multivariate Statistical Analysis, John Wiley, Hoboken, N. J.
  • Andersson, E., M. Fisher, R. Munro, and A. McNally (2000), Diagnosis of background errors for radiances and other observable quantities in a variational data assimilation scheme, and the explanation of a case of poor convergence, Q. J. R. Meteorol. Soc., 126, 14551472.
  • Collard, A. D., and S. B. Healy (2003), The combined impact of future space-based atmospheric sounding instruments on numerical weather-prediction analysis fields: A simulation study, Q. J. R. Meteorol. Soc., 129, 27412760.
  • Derber, J., and F. Bouttier (1999), A reformulation of the background error covariance in the ECMWF global data assimilation system, Tellus, Ser. A, 51, 195221.
  • Edwards, P. G., and D. Pawlak (2000), Metop: The space segment for Eumetsat's Polar System, ESA Bull., 102, 618.
  • ESA/EUMETSAT (1998), The GRAS instrument on METOP, ESA/EUMET-SAT Rep. ESA VR/3021/PI, EUMETSAT EPS/MIS/IN/9, 38 pp., Noordwijk, Netherlands.
  • Eyre, J. R. (1994), Assimilation of radio occultation measurements into a numerical weather prediction system, ECMWF Tech. Memo. 199, Eur. Cent. for Medium-Range Weather Forecasts, Reading, UK.
  • Fjeldbo, G., and V. R. Eshleman (1965), The bistatic radar-occultation method for the study of planetary atmospheres, J. Geophys. Res., 70, 32173225.
  • Fjeldbo, G., and V. R. Eshleman (1969), The atmosphere of Venus as studied with the Mariner 5 dual radio-frequency occultation experiment, Radio Sci., 4, 879897.
  • Foelsche, U., and G. Kirchengast (2004a), Sensitivity of GNSS radio occultation data to horizontal variability in the troposphere, Phys. Chem. Earth, 29, 225240.
  • Foelsche, U., and G. Kirchengast (2004b), Sensitivity of GNSS radio occultation profiles to horizontal variability in the troposphere: A simulation study, in Occultations for Probing Atmosphere and Climate, edited by G. Kirchengast et al., pp. 127136, Springer, New York.
  • Foelsche, U., G. Kirchengast, and A. K. Steiner (2003), Global climate monitoring based on CHAMP/GPS radio occultation data, in First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, edited by C. Reigber et al., pp. 397407, Springer, New York.
  • Foelsche, U., A. Gobiet, A. Löscher, G. Kirchengast, A. K. Steiner, J. Wickert, and T. Schmidt (2005), The CHAMPCLIM project: An overview, in Earth Observation With CHAMP - Results From Three Years in Orbit, edited by C. Reigber et al., pp. 615620, Springer, New York.
  • Gaspari, G., and S. E. Cohn (1999), Construction of correlation functions in two and three dimensions, Q. J. R. Meteorol. Soc., 125, 723757.
  • GCOS (2003), The second report on the adequacy of the global observing systems for climate in support of the UNFCCC, WMO/TD 1143, 74 pp., World Meteorol. Org., Geneva, Switzerland.
  • Gobiet, A., and G. Kirchengast (2002), Sensitivity of atmospheric profiles retrieved from GNSS occultation data to ionospheric residual and high-altitude initialization errors, Tech. Rep. ESA/ESTEC 1/2002, 56 pp., Inst. for Geophys., Astrophys., and Meteorol., Univ. of Graz, Graz, Austria. (Available at http://www.uni-graz.at/igam-arsclisys/publications/publ2002/AGandGK-IGAMTechRepfESA-58p-n1y2002.pdf).
  • Gobiet, A., and G. Kirchengast (2004), Advancements of GNSS radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility, J. Geophys. Res., 109, D24110, doi:10.1029/2004JD005117.
  • Gobiet, A., G. Kirchengast, J. Wickert, C. Retscher, D.-Y. Wang, and A. Hauchecorne (2004), Evaluation of stratospheric radio occultation retrieval using data from CHAMP, MIPAS, GOMOS, and ECMWF analysis fields, in Earth Observation With CHAMP - Results From Three Years in Orbit, edited by C. Reigber et al., pp. 531536, Springer, New York.
  • Gorbunov, M. E. (2002), Ionospheric correction and statistical optimization of radio occultation data, Radio Sci., 37(5), 1084, doi:10.1029/2000RS002370.
  • Hajj, G. A., E. R. Kursinski, L. J. Romans, W. I. Bertiger, and S. S. Leroy (2002), A technical description of atmospheric sounding by GPS occultation, J. Atmos. Sol. Terr. Phys., 64, 451469.
  • Hajj, G. A., C. O. Ao, P. A. Iijima, D. Kuang, E. R. Kursinski, A. J. Mannucci, T. K. Meehan, L. J. Romans, M. de la Torre Juarez, and T. P. Yunck (2004), CHAMP and SAC-C atmospheric occultation results and intercomparisons, J. Geophys. Res., 109, D06109, doi:10.1029/2003JD003909.
  • Healy, S. B. (2001a), Smoothing radio occultation bending angles above 40 km, Ann. Geophys., 19, 459468.
  • Healy, S. B. (2001b), Radio occultation bending angle and impact parameter errors caused by horizontal refractive index gradients in the troposphere: A simulation study, J. Geophys. Res., 106, 11,87511,889.
  • Healy, S. B., and J. R. Eyre (2000), Retrieving temperature, water vapour and surface pressure information from refractive index profiles derived by radio occultation: A simulation study, Q. J. R. Meteorol. Soc., 126, 16611683.
  • Healy, S. B., A. Jupp, and C. Marquardt (2005), Forecast impact experiment with GPS radio occultation measurements, Geophys. Res. Lett., 32, L03804, doi:10.1029/2004GL020806.
  • Hedin, A. E. (1991), Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 11591172.
  • Hocke, K., G. Kirchengast, and A. K. Steiner (1997), Ionospheric correction and inversion of GNSS occultation data: problems and solutions, Tech. Rep. ESA/ESTEC 2/1997, 35 pp., Inst. for Geophys., Astrophys., and Meteorol., Univ. of Graz, Graz, Austria.
  • Hoeg, P., and G. Kirchengast (2002), ACE+ - Atmospheric and Climate Explorer based on GPS, GALILEO, and LEO-LEO radio occultation (ESA Earth Explorer Opportunity Mission Proposal), Wissenschaftl. Ber. 14, 121 pp., Inst. for Geophys., Astrophys., and Meteorol., Univ. of Graz, Graz, Austria. (Available at http://www.uni-graz.at/igam-arsclisys/publications/publ2002/PHoegandGK -IGAMWissBer-No14-121p-y2002.pdf).
  • Kirchengast, G., and P. Hoeg (2004), The ACE+ Mission: An Atmosphere and Climate Explorer based on GPS, GALILEO, and LEO-LEO radio occultation, in Occultations for Probing Atmosphere and Climate, edited by G. Kirchengast et al., pp. 201220, Springer, New York.
  • Kirchengast, G., J. Fritzer, and J. Ramsauer (2002), End-to-end GNSS Occultation Performance Simulator Version 4 (EGOPS4) Software User Manual (Overview and Reference Manual), Tech. Rep. ESA/ESTEC 3/2002, 472 pp., Inst. for Geophys., Astrophys., and Meteorol., Univ. of Graz, Graz, Austria. (Available at http://www.uni-graz.at/igam-arsclisys/publications/publ2002/GKetal-IGAMTechRepfESA-84pOv-n3y2002.pdf).
  • Kuo, Y.-H., S. V. Sokolovskiy, R. A. Anthes, and F. Vandenberghe (2000), Assimilation of GPS radio occultation data for numerical weather prediction, Terr. Atmos. Oceanic Sci., 11(1), 157186.
  • Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and A. Anthes (2004), Inversion and error estimation of GPS radio occultation data, J. Meteorol. Soc. Jpn., 82, 507531.
  • Kursinski, E. R., and G. A. Hajj (2001), A comparison of water vapor derived from GPS occultations and global weather analyses, J. Geophys. Res., 106(D1), 11131138.
  • Kursinski, E. R., et al. (1996), Initial results of radio occultation of Earth's atmosphere using the global positioning system, Science, 271, 11071110.
  • Kursinski, E. R., G. A. Hajj, K. R. Hardy, J. T. Schofield, and R. Linfield (1997), Observing the Earth's atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res., 102(D19), 23,42923,465.
  • Lee, L.-C., C. Rocken, and R. Kursinski (Eds.) (2001), Applications of Constellation Observing System for Meteorology, Ionosphere, and Climate, Springer, New York.
  • Leitinger, R., and G. Kirchengast (1997), Inversion of the plasma signal in GNSS occultations – Simulation studies and sample results, Acta Geod. Geophys. Hung., 32, 379394.
  • Leitinger, R., J. E. Titheridge, G. Kirchengast, and W. Rothleitner (1996), A “simple” global empirical model for the F layer of the ionosphere (in German; English version available from the authors), Kleinheubacher Ber., 39, 697704.
  • Leroy, S. (1997), The measurement of geopotential heights by GPS radio occultation, J. Geophys. Res., 102(D6), 69716986.
  • Marquardt, C., K. Labitzke, C. Reigber, T. Schmidt, and J. Wickert (2001), An assessment of the quality of GPS/MET radio limb soundings during February 1997, Phys. Chem. Earth, 26, 125130.
  • Palmer, P. I., and J. J. Barnett (2001), Application of an optimal estimation inverse method to GPS/MET bending angle observations, J. Geophys. Res., 106(D15), 17,14717,160, doi:10.1029/2001JD900205.
  • Palmer, P. I., J. J. Barnett, J. R. Eyre, and S. B. Healy (2000), A nonlinear optimal estimation inverse method for radio occultation measurements of temperature, humidity, and surface pressure, J. Geophys. Res., 105(D13), 17,51317,526.
  • Ramsauer, J., and G. Kirchengast (2001), Sensitivity of atmospheric profiles retrieved from GNSS radio occultation data to instrumental errors, Tech. Rep. ESA/ESTEC 6/2001, 65 pp., Inst. for Geophys., Astrophys., and Meteorol., Univ. of Graz, Graz, Austria. (Available at http://www.uni-graz.at/igam-arsclisys/publications/publ2001/JRandGK-IGAMTechRepfESA-62p-n6y2001.pdf).
  • Reigber, C., H. Lühr, and P. Schwintzer (2002), CHAMP mission status, Adv. Space Res., 30, 129134.
  • Rieder, M. J., and G. Kirchengast (2001a), Error analysis for mesospheric temperature profiling by absorptive occultation sensors, Ann. Geophys., 19, 7181.
  • Rieder, M. J., and G. Kirchengast (2001b), Error analysis and characterization of atmospheric profiles retrieved from GNSS occultation data, J. Geophys. Res., 106(D23), 31,75531,770.
  • Rocken, C., et al. (1997), Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res., 102(D25), 29,84929,866.
  • Rocken, C., Y.-H. Kuo, W. S. Schreiner, D. Hunt, S. Sokolovskiy, and C. McCormick (2000), COSMIC system description, Terr. Atmos. Oceanic Sci., 11(1), 2152.
  • Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding: Theory and Practice, World Sci., Hackensack, N. J.
  • Schmidt, T., J. Wickert, G. Beyerle, and C. Reigber (2004), Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP, J. Geophys. Res., 109, D13105, doi:10.1029/2004JD004566.
  • Schroeder, T., S. Leroy, M. Stendel, and E. Kaas (2003), Validating the microwave sounding unit stratospheric record using GPS occultation, Geophys. Res. Lett., 30(14), 1734, doi:10.1029/2003GL017588.
  • Silvestrin, P., R. Bagge, M. Bonnedal, A. Carlström, J. Christensen, M. Hägg, T. Lindgren, and F. Zangerl (2000), Spaceborne GNSS radio occultation instrumentation for operational applications, paper presented at 13th ION-GPS Meeting, Salt Lake City, Utah.
  • Sokolovskiy, S., and D. Hunt (1996), Statistical optimization approach for GPS/Met data inversions, paper presented at GPS/Met Workshop, Union Radio Sci. Int., Tucson, Ariz.
  • Steiner, A. K. (2004a), Error analyses of refractivity profiles retrieved from CHAMP radio occultation data, DMI Sci. Rep. 04-02, 19 pp., Dan. Meteorol. Inst., Copenhagen, Denmark. (Available at http://www.uni-graz.at/igam-arsclisys/publications/publ2004/Steiner_DMIreport_2004.pdf).
  • Steiner, A. K., and G. Kirchengast (2004), Ensemble-based analysis of errors in atmospheric profiles retrieved from GNSS radio occultation data, in Occultations for Probing Atmosphere and Climate, edited by G. Kirchengast et al., pp. 149160, Springer, New York.
  • Steiner, A. K., G. Kirchengast, and H. P. Ladreiter (1999), Inversion, error analysis, and validation of GPS/MET occultation data, Ann. Geophys., 17, 122138.
  • Steiner, A. K., G. Kirchengast, U. Foelsche, L. Kornblueh, E. Manzini, and L. Bengtsson (2001), GNSS occultation sounding for climate monitoring, Phys. Chem. Earth A, 26, 113124.
  • Syndergaard, S. (1999), Retrieval analysis and methodologies in atmospheric limb sounding using the GNSS radio occultation technique, DMI Sci. Rep. 99-6, 131 pp., Dan. Meteorol. Inst., Copenhagen, Denmark. (Available at http://www.dmi.dk/dmi/sr99-6.pdf).
  • Syndergaard, S., D. Flittner, R. Kursinski, D. Feng, B. Herman, and D. Ward (2004), Simulating the influence of horizontal gradients on retrieved profiles from ATOMS occultation measurements – A promising approach for data assimilation, in Occultations for Probing Atmosphere and Climate, edited by G. Kirchengast et al., pp. 221232, Springer, New York.
  • Vorob'ev, V. V., and T. G. Krasil'nikova (1994), Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system, Phys. Atmos. Ocean, 29, 602609.
  • Ware, R., et al. (1996), GPS sounding of the atmosphere from low Earth orbit: Preliminary results, Bull. Am. Meteorol. Soc., 77, 1940.
  • Wickert, J., et al. (2001), Atmospheric sounding by GPS radio occultation: First results from CHAMP, Geophys. Res. Lett., 28, 32633266.
  • Wickert, J., T. Schmidt, G. Beyerle, R. König, C. Reigber, and N. Jakowski (2004), The radio occultation experiment aboard CHAMP: Operational data analysis and validation of vertical atmospheric profiles, J. Meteorol. Soc. Jpn., 82, 381395.
  • Zou, X., B. Wang, H. Liu, R. A. Anthes, T. Matsumura, and Y.-J. Zhu (2000), Use of GPS/MET refraction angles in three-dimensional variational analysis, Q. J. R. Meteorol. Soc., 126, 30133040.
  • Zou, X., H. Liu, and R. Anthes (2002), A statistical estimate in the calculation of radio occultation bending angles caused by a 2D approximation of ray tracing and the assumption of spherical symmetry of the atmosphere, J. Atmos. Oceanic Technol., 19, 5164.