SEARCH

SEARCH BY CITATION

References

  • Alberts, J. J., J. E. Schinder, R. W. Miller, and D. E. Nutter Jr. (1974), Elemental mercury evolution mediated by humic acid, Science, 184, 895897.
  • Allard, B., and I. Arsenie (1991), Abiotic reduction of mercury by humic substances in aquatic system: An important process for the mercury cycle, Water Air Soil Pollut., 56, 457464.
  • Bahlmann, E., R. Ebinghaus, and W. Ruck (2004), Influence of solar radiation on the emission of mercury from soils, paper presented at 7th International Conference on Mercury as a Global Pollutant, Oak Ridge Natl. Lab., Ljubljana, Slovenia, 27 June to 2 July.
  • Carpi, A., and S. E. Lindberg (1997), Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge, Environ. Sci. Technol., 31, 20852091.
  • Carpi, A., and S. E. Lindberg (1998), Application of a Teflon™ dynamic flux chamber for quantifying soil mercury flux: Test and results over background soil, Atmos. Environ., 32, 873882.
  • Fitzgerald, W. F., D. R. Engstrom, R. P. Mason, and N. A. Nater (1998), The case for atmospheric mercury contamination in remote areas, Environ. Sci. Technol., 32, 17.
  • Gustin, M. S., and S. E. Lindberg (2000), Assessing the contribution of natural sources to the global mercury cycle: The importance of intercomparing dynamic flux measurements, Fresenius J. Anal. Chem., 266, 417442.
  • Gustin, M. S., G. E. Taylor, and T. L. Leonard (1996), Atmospheric mercury concentrations associated with geologically and anthropogenically enriched sites in central western Nevada, Environ. Sci. Technol., 30, 25722579.
  • Gustin, M. S., G. E. Taylor, and R. A. Maxey (1997), Effect of temperature and air movement on the flux of elemental mercury from substrate to the atmosphere, J. Geophys. Res., 102, 38913898.
  • Gustin, M. S., P. Rasmussen, G. Edwards, W. Schroeder, and J. Kemp (1999), Application of a laboratory gas exchange chamber for assessment of in situ mercury emissions, J. Geophys. Res., 104, 21,87321,878.
  • Gustin, M. S., H. Biester, and C. S. Kim (2002), Investigation of the light-enhanced emission of mercury from naturally enriched substrates, Atmos. Environ., 36, 32413254.
  • Hebert, V. R., and G. C. Miller (1990), Depth dependence of direct and indirect photolysis on soil surfaces, J. Agric. Food Chem., 38, 913918.
  • Kim, K. H., S. E. Lindberg, and T. P. Meyers (1995), Micrometeorological measurements of mercury vapor fluxes over background forest soils in eastern Tennessee, Atmos. Environ., 29, 267282.
  • Leonard, T. L., G. E. Taylor, M. S. Gustin, and G. C. J. Fernandez (1998), Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere, Environ. Toxicol. Chem., 17, 20632071.
  • Lindberg, S. E., and T. P. Meyers (2001), Development of an automated micrometeorological method for measuring the emission of mercury vapor from wetland vegetation, Wetland Ecol. Manage., 9, 333347.
  • Lindberg, S. E., and J. Price (1999), Measurements of the airborne emission of mercury from municipal landfill operations: A short-term study in Florida, J. Air Waste Manage. Assoc., 49, 174185.
  • Lindberg, S. E., D. R. Jackson, J. W. Huckabee, S. A. Janzen, M. J. Levin, and J. R. Lund (1979), Atmospheric emission and plant uptake of mercury from agricultural soils near the Almadén mercury mine, J. Environ. Qual., 8, 572578.
  • Lindberg, S. E., T. P. Meyers, G. E. Taylor Jr., R. R. Turner, and W. H. Schroeder (1992), Atmosphere/surface exchange of mercury in a forest: Results of modeling and gradient approaches, J. Geophys. Res., 97, 25192528.
  • Lindberg, S. E., K. H. Kim, T. P. Meyers, and J. G. Owens (1995), Micrometeorological approach for quantifying air/surface exchange of mercury vapor: Test over contaminated soils, Environ. Sci. Technol., 29, 126135.
  • Lindberg, S. E., H. Zhang, A. F. Vette, M. S. Gustin, M. O. Barnett, and T. Kuiken (2002), Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils: Part 2. Effect of flushing flow rate and verification of a two-resistance exchange interface simulation model, Atmos. Environ., 36, 847859.
  • Lindqvist, O., and H. Rodhe (1985), Atmospheric mercury: A review, Tellus, Ser. B, 27, 136159.
  • Moore, C. (2004), The induction of mercury emissions from soil: Distinguishing soil temperature and incident radiation, Masters thesis, John Jay Coll. of Criminal Justice, N ew York.
  • Nriagu, J. O. (1994a), Mercury pollution from the past mining of gold and silver in the Americas, Sci. Total Environ., 149, 167181.
  • Nriagu, J. O. (1994b), Mechanistic steps in the photoreduction of mercury in natural waters, Sci. Total Environ., 154, 18.
  • Poissant, L., and A. Casimir (1998), Water-air and soil-air exchange rate of total gaseous mercury measured at background sites, Atmos. Environ., 32, 883893.
  • Scholtz, M. T., B. J. Van Heyst, and W. H. Schroeder (2003), Modelling of mercury emissions from background soils, Sci. Total Environ., 304, 185207.
  • Schroeder, W. H., G. Yarwood, and H. Niki (1991), Transformation processes involving mercury species in the atmosphere: Results from a literature survey, Water Air Soil Pollut., 56, 653666.
  • Siegel, S. M., and B. Z. Siegel (1988), Temperature determinants of plant-soil-air mercury relationships, Water Air Soil Pollut., 40, 443448.
  • Sigler, J. M., X. Lee, and W. Munger (2003), Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire, Environ. Sci. Technol., 37, 43434347.
  • U.S. Environmental Protection Agency (1997), Mercury study report to Congress, Publ. EPA-452/R-97–003, Washington, D. C.
  • Waite, T. D., and F. M. M. Morel (1984), Photoreductive dissolution of colloidal iron oxides in natural water, Environ. Sci. Technol., 18, 860868.
  • Wallschläger, D., R. R. Turner, J. London, R. Ebinghaus, H. H. Kock, J. Sommar, and Z. Xiao (1999), Factors affecting the measurement of mercury emissions from soils with flux chambers, J. Geophys. Res., 104, 21,85921,871.
  • Xiao, Z. F., D. Stromberg, and O. Lindqvist (1995), Influence of humic substances on photolysis of divalent mercury in aqueous solutions, Water Air Soil Pollut., 80, 789798.
  • Zhang, H., and S. E. Lindberg (1999), Processes influencing the emission of mercury from soils: A conceptual model, J. Geophys. Res., 104, 21,88921,896.
  • Zhang, H., S. E. Lindberg, F. J. Marsik, and G. J. Keeler (2001), Mercury air/surface exchange kinetics of background soils of the Tahquamenon River Watershed in the Michigan Upper Penninsula, Water Air Soil Pollut., 126, 151169.
  • Zhang, H., S. E. Lindberg, M. O. Barnett, A. F. Vette, and M. S. Gustin (2002), Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils. Part 1: Simulation of gaseous mercury emissions from soils using a two-resistance exchange interface model, Atmos Environ., 36, 835846.