SEARCH

SEARCH BY CITATION

References

  • Aberhan, M. (2001), Bivalve palaeobiography and the Hispanic Corridor: Time of opening and effectiveness of a proto-Atlantic seaway, Palaeogeogr. Palaeoclimatol. Palaeoecol., 165, 375394.
  • Bailey, T. R., Y. Rosenthal, J. M. McArthur, B. van de Schootbrugge, and M. F. Thirlwall (2003), Paleoceanographic changes of the late Pliensbachian–early Toarcian interval: A possible link to the genesis of an oceanic anoxic event, Earth Planet. Sci. Lett., 212, 307320.
  • Beaudoin, F., J. P. Herbin, J. P. Bassoullet, J. Dercourt, G. Lachkar, H. Manivit, and M. Renard (1990), Distribution of organic matter during the Toarcian in the Mediterranean Tethys and Middle East, in Deposition of Organic Facies, edited by Y. Huc, AAPG Stud. Geol., 30, 7392.
  • Bjerrum, C. J., F. Surlyk, J. H. Callomon, and R. L. Slingerland (2001), Numerical paleoceanographic study of the Early Jurassic Transcontinental Laurasian Seaway, Paleoceanography, 16, 390404.
  • Bucefalo Palliani, R., E. Mattioli, and J. B. Riding (2002), The response of marine phytoplankton and sedimentary organic matter to the early Toarcian (Lower Jurassic) oceanic anoxic event in northern England, Mar. Micropaleontol., 46, 223245.
  • Cochlan, W. P., and P. J. Harrison (1991), Uptake of nitrate, ammonium, and urea by nitrogen-starved cultures of Micromonas pusilla (Prasinophycae): Transient responses, J. Phycol., 27, 673679.
  • Eppley, R. W., J. N. Rogers, and J. J. McCarthy (1969), Half saturation constants for uptake of nitrate and ammonium by phytoplankton, J. Phycol., 5, 333340.
  • Farrimond, P., G. Eglinton, S. C. Brassell, and H. C. Jenkyns (1989), Toarcian anoxic event in Europe: An organic geochemical study, Mar. Pet. Geol., 6, 136147.
  • Frimmel, A., W. Oschmann, and L. Schwark (2004), Chemostratigraphy of the Posidonia Black Shale, SW Germany I. Influence of sea-level variation on organic facies evolution, Chem. Geol., 206, 199230.
  • Hesselbo, S. P., and H. C. Jenkyns (1995), A comparison of the Hettangian to Bajocian successions of Dorset and Yorkshire, in Field Geology of the British Jurassic, edited by P. D. Taylor, pp. 105150, Geol. Soc. of London, London.
  • Hesselbo, S. P., D. R. Gröcke, H. C. Jenkyns, C. J. Bjerrum, P. Farrimond, H. S. Morgans Bell, and O. R. Green (2000), Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event, Nature, 406, 392395.
  • Howarth, M. K. (1962), The Jet Rock Series and the Alum Shale Series of the Yorkshire coast, Proc. Yorkshire Geol. Soc., 33, 381422.
  • Howarth, M. K. (1973), The stratigraphy and ammonite fauna of the Upper Liassic Grey Shales of the Yorkshire coast, Bull. Br. Mus. Nat. Hist. Geol., 24, 235277.
  • Jenkyns, H. C. (1988), The early Toarcian (Jurassic) anoxic event: Stratigraphic, sedimentary, and geochemical evidence, Am. J. Sci., 288, 101151.
  • Jenkyns, H. C., and C. J. Clayton (1986), Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic, Sedimentology, 33, 87106.
  • Jenkyns, H. C., and C. J. Clayton (1997), Lower Jurassic epicontinental carbonates and mudstones from England and Wales: Chemostratigraphic signals and the early Toarcian anoxic event, Sedimentology, 44, 687706.
  • Jenkyns, H. C., B. Géczy, and J. D. Marshall (1991), Jurassic manganese carbonates of central Europe and the early Toarcian anoxic event, J. Geol., 99, 137149.
  • Jenkyns, H. C., D. R. Gröcke, and S. P. Hesselbo (2001), Nitrogen isotope evidence for water mass denitrification during the early Toarcian (Jurassic) oceanic anoxic event, Paleoceanography, 16, 111.
  • Jimenez, A. P., C. Jimenez de Cisneros, P. Rivas, and J. A. Vera (1996), The early Toarcian anoxic event in the westernmost Tethys (Subbetic): Paleogeographic and paleobiogeographic significance, J. Geol., 104, 399416.
  • Kump, L. R., and M. A. Arthur (1999), Interpreting carbon-isotope excursions: Carbonates and organic matter, Chem. Geol., 161, 181198.
  • Kump, L. R., M. A. Arthur, M. E. Patzkowsky, M. T. Gibbs, D. S. Pinkus, and P. M. Sheehan (1999), A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician, Palaeogeogr. Palaeoclimatol. Palaeoecol., 152, 173187.
  • Küspert, W. (1982), Environmental change during oil shale deposition as deduced from stable isotope ratios, in Cyclic and Event Stratification, edited by S. Einsele, and A. Seilacher, pp. 482501, Springer, New York.
  • Mattioli, E., B. Pittet, R. Bucefalo Palliani, H. J. Röhl, A. Schmid-Röhl, and E. Morettini (2004), Phytoplankton evidence for the timing and correlation of palaeoceanographical changes during the early Toarcian oceanic anoxic event (Early Jurassic), J. Geol. Soc. London, 161, 685693.
  • McArthur, J. M., D. T. Donovan, M. F. Thirlwall, B. W. Fouke, and D. Mattey (2000), Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, duration of ammonite biozones, and belemnite palaeotemperatures, Earth Planet. Sci. Lett., 179, 269285.
  • McArthur, J. M., N. M. M. Janssen, M. F. Thirlwall, and M. J. Leng (2005a), Hauterivian, Valanginian and Berriasian palaeo-oceanography from belemnites (87Sr/86Sr, δ13C, δ18O, Na, Sr, Mg,), Palaeogeogr. Palaeoclimatol. Palaeoecol., in press.
  • McArthur, J. M., P. Doyle, M. Leng, K. Reeves, R. Garcia-Sanchez, and T. Williams (2005b), Palaeo-oceanographic proxies in belemnites: Differences between sub-species, Earth Planet. Sci. Lett., in press.
  • Morettini, E. (1998), Lower Jurassic stable isotope stratigraphy (carbon, oxygen, nitrogen) of the Mediterranean Tethys (central Italy and southern Spain), Ph.D. thesis, Univ. of Lausanne, Lausanne, Switzerland.
  • Pancost, R. D., N. Crawford, S. Magness, A. Turner, H. C. Jenkyns, and J. R. Maxwell (2004), Further evidence for the development of photic-zone euxinic conditions during Mesozoic oceanic anoxic events, J. Geol. Soc. London, 161, 353364.
  • Prauss, M., B. Ligouis, and H. Luterbacher (1991), Organic matter and palynomorphs in the ‘Posidonienschiefer’ (Toarcian, Lower Jurassic) of southern Germany, in Modern and Ancient Continental Shelf Anoxia, edited by R. V. Tyson, and T. H. Pearson, Geol. Soc. Spec. Publ. London, 58, 335352.
  • Riegraf, W. (1982), The bituminous Lower Toarcian at the Truc-de-Balduc near Mende (Departement de la Lozere, S-France), in Cyclic and event stratification, edited by S. Einsele, and A. Seilacher, pp. 506511, Springer, New York.
  • Riegraf, W., G. Werner, and W. Lörcher (1984), Der Posidonienschiefer—Cephalopodenfauna, Biostratigraphie und Fazies des südwestdeutschen Untertoarcium (Lias ɛ), 195 pp., Enke, Stuttgart, Germany.
  • Röhl, H.-J., A. Schmid-Röhl, W. Oschmann, A. Frimmel, and L. Schwark (2001), The Posidonia Shale (Lower Toarcian) of SW-Germany: An oxygen depleted ecosystem controlled by sealevel and palaeoclimate, Palaeogeogr. Palaeoclimatol. Palaeoecol., 169, 273299.
  • Rosales, I., S. Quesada, and S. Robles (2004), Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain, Palaeogeog. Palaeoclimatol. Palaeoecol., 203, 253275.
  • Sælen, G. (1989), Diagenesis and construction of the belemnite rostrum, Palaeontology, 32, 765798.
  • Sælen, G., P. Doyle, and M. R. Talbot (1996), Stable isotope analyses of belemnite rostra from the Whitby Mudstone Fm., England: Surface water conditions during deposition of a marine black shale, Palaios, 11, 97117.
  • Sælen, G., R. V. Tyson, M. R. Talbot, and N. Telnæs (1998), Evidence of recycling of isotopically light CO2(aq) in stratified black shale basins: Contrasts between the Whitby Mudstone and Kimmeridge Clay formations, United Kingdom, Geology, 26, 747750.
  • Sælen, G., R. V. Tyson, N. Telnæs, and M. R. Talbot (2000), Contrasting watermass conditions during deposition of the Whitby Mudstone (Lower Jurassic) and Kimmeridge Clay (Upper Jurassic) formations, UK, Palaeogeogr. Palaeoclimatol. Palaeoecol., 163, 163196.
  • Schaeflé, J., B. Ludwig, P. Albrecht, and G. Ourisson (1977), Hydrocarbures aromatique d'origine geologique. II. Nouveaux carotanoıuml;des aromatiques fossils, Tetrahedr. Lett., 41, 36733676.
  • Schmid-Röhl, A., H. J. Röhl, W. Oschmann, A. Frimmel, and L. Schwark (2002), Palaeoenvironmental reconstruction of Lower Toarcian epicontinental black shales (Posidonia Shale, SW Germany): Global versus regional control, Geobios, 35, 1320.
  • Schouten, S., M. E. Kaam-Peters, I. Rijpstra, M. Schoell, and J. S. Sinnighe Damste (2000), Effects of an oceanic anoxic event on the stable carbon isotopic composition of early Toarcian carbon, Am. J. Sci., 300, 122.
  • Schwark, L., and A. Frimmel (2004), Chemostratigraphy of the Posidonia Black Shale, SW Germany II. Assessment of extent and persistence of photic-zone anoxia using aryl isoprenoid distribution, Chem. Geol., 206, 231248.
  • Sundararaman, P., M. Schöll, R. Littke, D. R. Baker, D. Leythauser, and J. Rüllkotter (1993), Depositional environment of Toarcian shales from northern Germany as monitored with porphyrins, Geochim. Cosmochim. Acta, 57, 42134218.
  • Tyson, R. V. (1985), Palynofacies and sedimentology of some Late Jurassic sediments from the British Isles and northern North Sea, Ph.D. thesis, 623 pp., Open Univ., Milton Keynes, U.K.
  • van de Schootbrugge, B., T. R. Bailey, Y. Rosenthal, M. E. Katz, J. D. Wright, S. Feist-Burkhardt, K. G. Miller, and P. G. Falkowski (2005), Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys ocean, Paleobiology, 31, 7397.
  • Zeebe, R. E. (2001), Seawater pH and isotopic palaeotemperatures of Cretaceous oceans, Palaeogeogr. Palaeoclimatol. Palaeoecol., 170, 4957.