SEARCH

SEARCH BY CITATION

References

  • Anderson, W. L. (1979), Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering, Geophysics, 44, 1287.
  • Balay, S., W. D. Gropp, L. C. McInnes, and B. F. Smith (1997), Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, edited by E. Arge, A. M. Bruaset, and H. P. Langtangen, Birkhäuser Boston, Cambridge, Mass.
  • Balay, S., W. D. Gropp, L. C. McInnes, and B. F. Smith (2000), PETSc 2.0 users manual (ANL-95/11—Revision 2.0.28), Argonne Natl. Lab., Chicago, Ill.
  • Berdichevsky, M. N., and M. S. Zhdanov (1984), Advanced Theory of Deep Geomagnetic Sounding, Elsevier Sci., New York.
  • Berenger, J. P. (1994), A perfectly matched layer for the absorption of the electromagnetic waves, J. Comput. Phys., 114, 185.
  • Davydycheva, S., V. Druskin, and T. Habashy (2003), An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media, Geophysics, 68, 1525.
  • Fomenko, E., and T. Mogi (2002), A new computation method for a staggered grid of 3D EM field conservative modeling, Earth Planets Space, 54, 499.
  • Golub, G. H., and C. F. Van Loan (1996), Matrix Computation, 3rd ed., Johns Hopkins Univ. Press, Baltimore, Md.
  • Habashy, T. M., R. W. Groom, and B. R. Spies (1993), Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering, J. Geophys. Res., 98, 1759.
  • Haber, E., U. M. Ascher, D. A. Aruliah, and D. W. Oldenburg (2000), Fast simulation of 3D electromagnetic problems using potentials, J. Comput. Phys., 163, 150.
  • Hursan, G., and M. S. Zhdanov (2002), Contraction integral equation method in three-dimensional electromagnetic modeling, Radio Sci., 37(6), 1089, doi:10.1029/2001RS002513.
  • Kincaid, D., and W. Cheney (1996), Numerical Analysis, 2nd ed., Brooks/Cole Publ. Co., Pacific Grove, Calif.
  • Mackie, R. L., T. R. Madden, and P. E. Wannamaker (1993), Three-dimensional magnetotelluric modeling using difference equations—Theory and comparisons to integral equation solutions, Geophysics, 58, 215.
  • Mackie, R. L., J. T. Smith, and T. R. Madden (1994), Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example, Radio Sci., 29, 923.
  • Mehanee, S. (2003), Multidimensional finite difference electromagnetic modeling and inversion based on the balance method, Ph.D. thesis, Univ. of Utah, Salt Lake City.
  • Mehanee, S., and M. Zhdanov (2001), 3-D finite-difference forward modeling based on the balance method, in 71st Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, p. 1443, Soc. of Explor. Geophys., Tulsa, Okla.
  • Morse, P. M., and H. Feshbach (1953), Methods of Mathematical Physics, Part 1, McGraw-Hill, New York.
  • Newman, G., and D. Alumbaugh (1995), Frequency-domain modelling of airborne electromagnetic responses using staggered finite differences, Geophys. Pros., 43, 1021.
  • Saad, Y., and M. N. Schultz (1986), GMRES: A generalized minimal residual algorithm for solving a nonsymmetric linear system, SIAM J. Sci. Stat. Comput., 7, 856.
  • Samarsky, A. (1984), Theory of the Difference Schemes (in Russian), Nauka, Moscow.
  • Smith, J. T. (1996), Conservative modeling of 3-D electromagnetic fields; part II: Bi-conjugate gradient solution and an accelerator, Geophysics, 61, 1319.
  • Spichak, V. (1999), Magnetotelluric Fields in Three-Dimensional Geoelectrical Models (in Russian), Sci. World, Moscow.
  • Turkel, E., and A. Yefet (1998), Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27, 533.
  • Wang, T., and G. W. Hohmann (1993), A finite difference time-domain solution for three dimensional electromagnetic modeling, Geophysics, 58, 797.
  • Wang, T., and S. Fang (2001), 3-D electromagnetic anisotropy modeling using finite differences, Geophysics, 66, 1386.
  • Wannamaker, P. E., G. W. Hohmann, and W. A. SanFilipo (1984), Electromagnetic modeling of three dimensional bodies in layered earths using integral equations, Geophysics, 49, 60.
  • Weaver, J. T. (1994), Mathematical Methods for Geo-Electromagnetic Induction, Res. Stud. Press, Taunton, Mass.
  • Weaver, J. T., and C. R. Brewitt-Taylor (1978), Improved boundary conditions for the numerical solution of E-polarization problems in geomagnetic induction, Geophys. J. R. Astron. Soc., 87, 917.
  • Xiong, Z. (1992), EM modeling of three-dimensional structures by the method of system iteration using integral equations, Geophysics, 57, 1556.
  • Yee, K. S. (1966), Numerical solution of initial boundary problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag., 14, 302.
  • Zhdanov, M. S. (1988), Integral Transforms in Geophysics, Springer-Verlag, New York.
  • Zhdanov, M. S. (2002), Geophysical Inverse Theory and Regularization Problems, Elsevier Sci., New York.
  • Zhdanov, M. S., and G. V. Keller (1994), The Geoelectrical Methods in Geophysical Exploration, Elsevier Sci., New York.
  • Zhdanov, M. S., and V. V. Spichak (1989), Mathematical modeling of three-dimensional quasi-stationary electromagnetic fields in geoelectrics (in Russian), Dokl. Akad. Nauk. SSSR, 309, 57.
  • Zhdanov, M. S., and V. V. Spichak (1992), Mathematical Modeling of Electromagnetic Fields in Three-Dimensional Inhomogeneous Media, (in Russian), Nauka, Moscow.
  • Zhdanov, M. S., N. G. Golubev, V. V. Spichak, and I. M. Varentsov (1982), The construction of effective methods for electromagnetic modeling, Geophys. J. R. Astron. Soc., 68, 589.
  • Zhdanov, M. S., I. M. Varentsov, J. T. Weaver, N. G. Golubev, and V. A. Krylov (1997), Methods for modeling electromagnetic fields. Results from COMMEMI—The international project on the comparison of modeling methods for electromagnetic induction, J. Appl. Geophys., 37, 1.
  • Zhdanov, M. S., V. I. Dmitriev, S. Fang, and G. Hursan (2000), Quasi-analytical approximations and series in electromagnetic modeling, Geophysics, 65, 1746.