SEARCH

SEARCH BY CITATION

References

  • Balser, M., and C. A. Wagner (1960), Observations of Earth-ionosphere cavity resonances, Nature, 188, 638.
  • Borucki, W. J., Z. Levin, R. C. Whitten, R. G. Keesee, L. A. Capone, O. B. Toon, and J. Dubach (1982), Predicted electrical conductivity between 0 and 80 km in the Venusian atmosphere, Icarus, 51, 302.
  • Cole, R. K.Jr. (1965), The Schumann resonances, J. Res. Natl. Bur. Stand. U.S., 69D, 1345.
  • Cole, R. K.Jr., and E. T. Pierce (1965), Electrification in the Earth's atmosphere for altitude between 0 and 100 km, J. Geophys. Res., 70(12), 2735.
  • Connor, J. N. L., and D. C. Mackay (1978), Accelerating the convergence of the zonal harmonic series representation in the Schumann resonance problem, J. Atmos. Terr. Phys., 40, 977.
  • Crozier, W. D. (1964), Electric field of New Mexico dust devil, J. Geophys. Res., 69, 5427.
  • Cummer, S. A., and W. M. Farrell (1999), Radio atmospheric propagation on Mars and potential remote sensing applications, J. Geophys. Res., 104, 14,149.
  • Eden, H. F., and B. Vonnegut (1973), Electrical breakdown caused by dust motion in low-pressure atmospheres: Consideration for Mars, Science, 180, 962.
  • Farrell, W. F., M. L. Kaiser, M. D. Desch, J. G. Houser, S. A. Cummer, D. M. Wilt, and G. A. Landis (1999), Detecting electrical activity from Martian dust storms, J. Geophys. Res., 104, 3795.
  • Galejs, J. (1972), Terrestrial Propagation of Long Electromagnetic Waves, Pergamon, New York.
  • Greifinger, C., and P. Greifinger (1978), Approximate method for determining ELF eigenvalues in the Earth-ionosphere waveguide, Radio Sci., 13, 831.
  • Greifinger, C., and P. Greifinger (1979), On the ionospheric parameters which govern high-latitude ELF propagation in the Earth-ionosphere waveguide, Radio Sci., 14, 889.
  • Greifinger, C., and P. Greifinger (1986), Noniterative procedure for calculating ELF mode constants in the anisotropic Earth-ionosphere waveguide, Radio Sci., 21, 981.
  • Hynninen, E. M., and Y. P. Galyuck (1972), The field of a vertical electric dipole over the spherical Earth's surface below the vertically inhomogeneous ionosphere (in Russian), Probl. Diffr. Wave Propagat., 11, 109.
  • Ishaq, M., and D. L. Jones (1977), Method of obtaining radiowave propagation parameters for the Earth-ionosphere duct at ELF, Electron. Lett., 13(9), 254.
  • Jones, D. L. (1967), Schumann resonances and ELF propagation for inhomogeneous, isotropic ionosphere profiles, J. Atmos. Terr. Phys., 29, 1037.
  • Kirillov, V. V. (1993), Parameters of the Earth-ionosphere waveguide at ELF (in Russian), Probl. Diffr. Wave Propagat., 25, 35.
  • Kirillov, V. V. (1996), Two-dimensional theory of electromagnetic wave propagation in the ELF range in the Earth-ionosphere waveguide (in Russian), Izv. VUZ Radiofis., 39(9), 1103.
  • Kirillov, V. V., and V. N. Kopeykin (2002), Solving a two-dimensional telegraph equation with anisotropic parameters, Radiophys. Quantum Electron., 45(12), 929.
  • Kirillov, V. V., V. N. Kopeykin, and V. K. Mushtak (1997), Electromagnetic waves in ELF range in the Earth-ionosphere waveguide (in Russian), Geomagn. Aeron., 37(3), 114.
  • Ksanfomaliti, L. V. (1979), Lightning in the cloud layer of Venus (in Russian), Kosm. Issled., 17(5), 747.
  • Ksanfomaliti, L. V. (1983a), Electrical activity of the atmosphere of Venus. I. Measurements on descending probes (in Russian), Kosm. Issled., 21(2), 279.
  • Ksanfomaliti, L. V. (1983b), Electrical activity of the atmosphere of Venus. II. Satellite measurements (in Russian), Kosm. Issled., 21(4), 619.
  • Ksanfomaliti, L. V. (1985), Planet Venus (in Russian), Nauka, Moscow.
  • Lammer, H., T. Tokano, G. Fischer, W. Stumptner, G. J. Molina-Cuberos, K. Schwingenschuh, and H. O. Rucher (2001), Lightning activity of Titan: Can Cassiny/Huygens detect it? Planet. Space Sci., 49, 561.
  • Madden, T., and W. Thompson (1965), Low-frequency electromagnetic oscillations of the Earth-ionosphere cavity, Rev. Geophys., 3(2), 211.
  • Melnik, O., and M. Parrot (1998), Electrostatic discharge in Martian dust storms, J. Geophys. Res., 103(A12), 29,107.
  • Molina-Cuberos, G. J., J. J. Lopez-Moreno, and R. Rodrigo (1999), Chemistry of the galactic cosmic ray induced ionosphere of Titan, J. Geophys. Res., 104(E9), 21,997.
  • Morente, J. A., G. J. Molina-Cuberos, J. A. Porti, K. Schwingenschuh, and B. P. Besser (2003), A study of the propagation of electromagnetic waves in Titan's atmosphere with the TLM numerical method, Icarus, 162, 374.
  • Mushtak, V. C., and E. R. Williams (2002), ELF propagation parameters for uniform models of the Earth-ionosphere waveguide, J. Atmos. Sol. Terr. Phys., 64, 1989.
  • Nickolaenko, A. P. (1996), Modern aspects of Schumann resonance studies, J. Atmos. Terr. Phys., 59(7), 805.
  • Nickolaenko, A. P., and M. Hayakawa (2002), Resonances in the Earth-Ionosphere Cavity, Kluwer Acad., Norwell, Mass.
  • Nickolaenko, A. P., and L. M. Rabinowicz (1974), Speeding up the convergence of the zonal harmonic series representation in the Schumann resonance problem, J. Atmos. Terr. Phys., 36, 979.
  • Nickolaenko, A. P., and L. M. Rabinowicz (1982), On the possibility of existence of global electromagnetic resonances on the planets of Solar system, Space Res., 20, 82.
  • Nickolaenko, A. P., B. P. Besser, and K. Schwingenschuh (2003), Model computations of Schumann resonance on Titan, Planet. Space Sci., 51(13), 853.
  • Pappert, R. A., and W. F. Moler (1974), Propagation theory and calculations at lower ELF, IEEE Trans. Commun., COM-22, 438.
  • Price, C. (2000), Evidence for a link between global lightning activity and upper tropospheric water vapor, Nature, 406, 290.
  • Renno, N. O., A. Wong, S. K. Atreya, I. de Pater, and M. Roos-Serote (2003), Electrical discharges and broadband radio emission by Martian dust devils and dust storms, Geophys. Res. Lett., 30(22), 2140, doi:10.1029/2003GL017879.
  • Russell, C. T., and F. L. Scarf (1990), Evidence for lightning on Venus, Adv. Space Res., 10(5), 125.
  • Scarf, F. L., and C. T. Russell (1983), Lightning measurements from the Pioneer Venus Orbiter, Geophys. Res. Lett., 10(12), 1192.
  • Schumann, W. O. (1952), On the radiation free self-oscillations of a conducting sphere which is surrounded by an air layer and an ionospheric shell (in German), Z. Naturfirsch. A, 7, 149.
  • Sentman, D. D. (1990), Electrical conductivity of Jupiter's shallow interior and the formation of a resonant planetary-ionosphere cavity, Icarus, 88, 73.
  • Sentman, D. D. (1995), Schumann resonances, in Handbook of Atmospheric Electrodynamics, vol. I, edited by H. Volland, pp. 267295, CRC Press, Boca Raton, Fla.
  • Sentman, D. D. (1996), Schumann resonance spectra in a two-scale-height Earth-ionosphere cavity, J. Geophys. Res., 101, 9479.
  • Slater, J. C. (1945), Microwave Transmission, Dover, Mineola, N. Y.
  • Sukhorukov, A. I. (1991), On the Schumann resonances on Mars, Planet. Space Sci., 39(12), 1673.
  • Taylor, W. W. L., F. L. Scarf, C. T. Russell, and L. H. Brace (1979), Evidence for lightning on Venus, Nature, 279, 614.
  • Tokano, T., G. J. Molina-Cuberos, H. Lammer, and W. Stumptner (2001), Modeling of thunderclouds and lightning on Titan, Planet. Space Sci., 49, 539.
  • Williams, E. R. (1992), The Schumann resonance: A global tropical thermometer, Science, 256, 1184.