SEARCH

SEARCH BY CITATION

References

  • Bleszynski, E., M. Bleszynski, and T. Jaroszewicz (1996), AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems, Radio Science, 31(5), 12251251.
  • Chew, W. C., J. M. Jin, E. Michielssen, and J. Song (2001), Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Norwood, Mass.
  • Ergül, Ö., and L. Gürel (2004), Improving the accuracy of the MFIE with the choice of basis functions, paper presented at 2004 USNC/URSI National Radio Science Meeting, U.S. Natl. Comm. of the Int. Union of Radio Sci., Monterey, Calif.
  • Harrington, R. F. (1968), Field Computation by Moment Methods, Macmillan, New York.
  • Harrington, R. F. (1989), Boundary integral formulations for homogeneous material bodies, J. Electromagn. Waves Appl., 3, 115.
  • Järvenpää, S., M. Taskinen, and P. Ylä-Oijala (2005), Singularity subtraction technique for higher order polynomial vector basis functions on planar triangles, IEEE Trans. Antennas Propag. in press.
  • Jung, B. H., T. K. Sarkar, and Y.-S. Chung (2002), A survey of various frequency domain integral equations for the analysis of scattering from three-dimensional dielectric objects, in Progress in Electromagnetic Research, vol. 36, edited by J. A. Kong, pp. 193246, Elsevier, New York.
  • Jung, B. H., T. K. Sarkar, and M. Salazar-Palma (2004), Combined field integral equation for the analysis of scattering from 3D conducting bodies coated with a dielectric material, Microwave Opt. Technol. Lett., 40(6), 511516.
  • Kas, A., and E. L. Yip (1987), Preconditioned conjugate gradient methods for solving electromagnetic problems, IEEE Trans. Antennas Propag., 35, 147152.
  • Kishk, A. A., and L. Shafai (1986), Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions, IEEE Trans. Antennas Propag., 34, 666673.
  • Kolundzija, B. M. (1999), Electromagnetic modelling of composite metallic and dielectric structures, IEEE Trans. Microwave Theory Tech., 47(7), 10211032.
  • Kolundzija, B. M., and A. R. Djordjevic (2002), Electromagnetic Modelling of Composite Metallic and Dielectric Structures, Artech House, Norwood, Mass.
  • Kolundzija, B. M., and T. Sarkar (2001), Iterative solvers in frequency analysis of complex structures based on MoM solution of surface integral equations, in IEEE Antennas and Propagation Society International Symposium 2001, vol. 2, pp. 588591, IEEE Press, Piscataway, N. J.
  • Li, J.-Y., Z.-Z. Oo, and L.-W. Li (2002), Solution of scattering from homogeneous dielectric objects using fast multipole method, in 2002 3rd International Conference on Microwave and Millimeter Wave Technology, edited by Z. Feng, and H. Long, pp. 424427, IEEE Press, Piscataway, N. J.
  • Lloyd, T. W., J. M. Song, G. Kang, and C.-C. Lu (2004), Numerical study of surface integral formulations for homogeneous bodies, paper presented at IEEE Antennas and Propagation Symposium 2004, Inst. of Electr. and Electron. Eng., Monterey, Calif.
  • Lu, C., and C. Luo (2003), Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects, Radio Sci., 38(2), 1028, doi:10.1029/2002RS002610.
  • Makarov, S., and R. Vedantham (2002), Performance of the generalized minimum residual (GMRES) iterative solution for the magnetic field integral equation, Radio Sci., 37(5), 1072, doi:10.1029/2000RS002588.
  • Mautz, J. R., and R. F. Harrington (1978), H-field, E-field and combined-field solutions for conducting bodies of revolution, Arch. Elektron. Uebertraeg., 32, 157164.
  • Mautz, J. R., and R. F. Harrington (1979), Electromagnetic scattering from a homogeneous material body of revolution, Arch. Elektron. Uebertraeg., 33, 7180.
  • Medgyesi-Mitschang, L. N., J. M. Putnam, and M. B. Gedera (1994), Generalized method of moments for three-dimensional penetrable scatterers, J. Opt. Soc. Am., A Opt. Image Sci., 11, 13831398.
  • Müller, C. (1969), Foundations of the Mathematical Theory of Electromagnetic Waves, Springer, New York.
  • Pocock, M. D., and S. P. Walker (1997), The complex bi-conjugate gradient solver applied to large electromagnetic scattering problems, computational costs and cost scaling, IEEE Trans. Antennas Propag., 45, 140146.
  • Rao, S. M., D. R. Wilton, and A. W. Glisson (1982), Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propag., 30, 409418.
  • Rokhlin, V. (1990), Rapid solution of integral equations of scattering theory in two dimensions, J. Comput. Phys., 86(2), 414439.
  • Saad, Y., and M. H. Schultz (1986), GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856869.
  • Sarkar, T. K., A. R. Djordjevic, and E. Arvas (1985), On the choice of expansion and weighting functions in the numerical solution of operator equations, IEEE Trans. Antennas Propag., 33, 988996.
  • Sheng, X.-Q., J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu (1998), Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies, IEEE Trans. Antennas Propag., 46, 17181726.
  • Song, J. M., and W. C. Chew (1995), Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering, Microwave Opt. Technol. Lett., 10(1), 1419.
  • Trintinalia, L. C., and H. Ling (2001), First order triangular patch basis functions for electromagnetic scattering analysis, J. Electromagn. Waves Appl., 15, 15211537.
  • Wilton, D. R., and J. E. Wheeler III (1991), Comparison of convergence rates of the conjugate gradient method applied to various integral equation formulations, in Application of Conjugate Gradient Method to Electromagnetics and Signal Processing, Prog. Electromagn. Res., vol. 5, edited by J. A. Kong, and T. K. Sarkar, chap. 5, pp. 131158, Elsevier, New York.
  • Yeung, M. S. (1999), Single integral equation for electromagnetic scattering by three-dimensional dielectric objects, IEEE Trans. Antennas Propag., 47, 16151622.
  • Ylä-Oijala, P., and M. Taskinen (2003), Calculation of CFIE impedance matrix elements with RWG and n × RWG functions, IEEE Trans. Antennas Propag., 51, 18371846.
  • Ylä-Oijala, P., and M. Taskinen (2005a), Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects, IEEE Trans. Antennas Propag., 53, 11681173.
  • Ylä-Oijala, P., and M. Taskinen (2005b), Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects, IEEE Trans. Antennas Propag., 53, 33163323.
  • Ylä-Oijala, P., M. Taskinen, and J. Sarvas (2005), Surface integral equation method for general composite metallic and dielectric structures with junctions, in Progress in Electromagnetic Research, vol. 52, edited by J. A. Kong, pp. 81108, Elsevier, New York.
  • Zhao, J.-S., and W. C. Chew (2000), Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies, IEEE Trans. Antennas Propag., 48, 16351645.
  • Zhu, A., and S. Gedney (2004), Comparison of the Müller and PMCHWT surface integral formulations for the locally corrected Nyström method, paper presented at IEEE Antennas and Propagation Symposium 2004, Inst. of Electr. and Electron. Eng., Monterey, Calif.