SEARCH

SEARCH BY CITATION

References

  • Aygün, K., M. Lu, B. Shanker, and E. Michielssen (2000), Analysis of PCB level EMI phenomena using an adaptive low-frequency plane wave time domain algorithm, paper presented at 2000 International Symposium on Electromagnetic Compatibility, Inst. of Electr. and Electron. Eng., Washington D. C., 21 – 25 Aug.
  • Bleszynski, E., M. Bleszynski, and T. Jaroszewicz (2001), A new fast time domain integral equation solution algorithm, in IEEE Antennas and Propagation Society International Symposium 2001, vol. 4, pp. 176179, IEEE Press, Piscataway, N. J.
  • Cadzow, J. A. (1979), An extrapolation procedure for band-limited signals, IEEE Trans. Acoust. Speech Signal Process., 27, 412.
  • Capolino, F., and L. Felsen (2002), Frequency- and time-domain Green's function for a phased semi-infinite periodic line array of dipoles, IEEE Trans. Antennas Propag., 50, 3134.
  • Capolino, F., and L. Felsen (2003), Time-domain Green's function for an infinite sequentially excited periodic planar array of dipoles, IEEE Trans. Antennas Propag., 51, 160170.
  • Chen, N.-W., B. Shanker, and E. Michielssen (2002), Volume/surface-integral-equation-based analysis of transient scattering from periodic perfectly conducting structures with dielectric media, paper presented at National Radio Science Meeting, U.S. Natl. Comm. of the Int. Union of Radio Sci., San Antonio, Tex.
  • Chen, N.-W., B. Shanker, and E. Michielssen (2003), Integral-equation-based analysis of transient scattering from doubly periodic perfectly conducting structures, IEE Proc., Part H, Microwave Antennas Propag., 150, 120124.
  • Epp, L. W. (1990), Frequency selective surfaces with lumped and time-varying loads, variable surface impedance and multiple screens, Ph.D. dissertation, Univ. of Ill. at Urbana-Champaign, Urbana.
  • Ergin, A. A., B. Shanker, and E. Michielssen (1998), Fast evaluation of three-dimensional transient wave fields using diagonal translation operators, J. Comput. Phys., 146, 157180.
  • Felsen, L., and F. Capolino (2000), Time-domain Green's function for an infinite sequentially excited periodic line array of dipoles, IEEE Trans. Antennas Propag., 48, 921931.
  • Gianvittorio, J. P., Y. Rahmat-Samii, and J. Romeu (2001), Fractal FSS: Various self-similar geometries used for dual-band and dual-polarized FSS, in IEEE Antennas and Propagation Society International Symposium 2001, vol. 3, pp. 640643, IEEE Press, Piscataway, N. J.
  • Gradshteyn, I. S., and I. M. Ryzhik (1980), Table of Integrals, Series, and Products, Elsevier, New York.
  • Harms, P., and R. Mittra (1994), Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structure, IEEE Trans. Antennas Propag., 42, 13171324.
  • Harrier, E., C. Lubich, and M. Schlichte (1985), Fast numerical solution of nonlinear Volterra convolution equations, SIAM J. Sci. Stat. Comput., 6, 532541.
  • Holter, H., and H. Steyskal (2002), Infinite phased-array analysis using FDTD periodic boundary conditions—Pulse scanning in oblique directions, IEEE Trans. Antennas Propag., 47, 15081514.
  • Jordan, K. E., G. R. Richter, and P. Sheng (1986), An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic surfaces, J. Comput. Phys., 63, 222235.
  • Jorgenson, R. E., and R. Mittra (1991), Scattering from structured slabs having two-dimensional periodicity, IEEE Trans. Antennas Propag., 39, 151157.
  • Knab, J. J. (1979), Interpolation of bandlimited functions using the approximate prolate series, IEEE Trans. Inf. Theory, 25, 717720.
  • Maloney, J. G., and M. P. Kesler (2002), Analysis of periodic structures, in Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., edited by A. Taflove, and S. C. Hagness, pp. 569625, Artech House, Norwood, Mass.
  • Marrocco, G., and F. Capolino (2002), Transient radiation by periodic structures: Accuracy of the (time domain-floquet wave)–FDTD algorithm, in IEEE Antennas and Propagation Society International Symposium 2002, vol. 3, pp. 643646, IEEE Press, Piscataway, N. J.
  • Rao, S. M., D. R. Wilton, and A. W. Glisson (1982), Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propag., 3, 409418.
  • Roden, J. A., S. D. Gedeny, M. P. Kesler, J. G. Maloney, and P. H. Harms (1998), Time-domain analysis of periodic structures at oblique incidence: Orthogonal and nonorthogonal FDTD implementations, IEEE Trans. Microwave Theory Tech., 46, 420427.
  • Saad, Y. (1996), Iterative Methods for Sparse Linear Systems, PWS, New York.
  • Slepian, D., and H. O. Pollak (1961), Prolate spheroidal wave functions, Fourier analysis and uncertainty—I, Bell Syst. Tech. J., 4363, Jan.
  • Tsay, W. J., and D. M. Pozar (1993), Application of the FDTD technique to periodic problems in scattering and radiation, IEEE Microwave Guided Wave Lett., 3, 250252.
  • Veysoglu, M. E., R. T. Shin, and J. A. Kong (1993), A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique incidence case, J. Electromagn. Waves Appl., 7, 15951607.
  • Yee, K. S. (1996), Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag., 14, 302307.
  • Yilmaz, A. E., D. S. Weile, B. Shanker, J.-M. Jin, and E. Michielssen (2002), Fast analysis of transient scattering in lossy media, IEEE Antennas Wireless Propag. Lett., 1, 1417.
  • Yilmaz, A. E., J.-M. Jin, and E. Michielssen (2003), Time domain adaptive integral method for the combined field integral equation, in IEEE Antennas and Propagation Society International Symposium 2003, vol. 3, pp. 543546, IEEE Press, Piscataway, N. J.