SEARCH

SEARCH BY CITATION

References

  • Anastassiu, H. T., D. G. Lymperopoulos, and D. I. Kaklamani (2004), Accuracy analysis and optimization of the method of auxiliary sources (MAS) for scattering by a circular cylinder, IEEE Trans. Antennas Propag., 52, 15411547.
  • Bleszynski, E., M. Bleszynski, and T. Jaroszewicz (1996), AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems, Radio Sci., 31, 12251251.
  • Bleszynski, E., M. Bleszynski, and T. Jaroszewicz (2003), Construction of large-support basis functions for rigorous high-frequency integral equations, paper presented at Antennas and Propagation Society International Symposium, Inst. of Electr. and Electron. Eng., Columbus, Ohio.
  • Boag, A., and C. Letreu (2003), Fast radiation pattern evaluation for lens and reflector antennas, IEEE Trans. Antennas Propag., 51, 10631068.
  • Boag, A., and R. Mittra (1994), Complex multipole beam approach to electromagnetic scattering problems, IEEE Trans. Antennas Propag., 42, 366372.
  • Bucci, O. M. (2004), Computational complexity in the analysis of large antennas, 2004 URSI EMTS Symposium, Union Radio Sci. Int., Pisa, Italy.
  • Bucci, O. M., and G. D'Elia (1996), Advanced sampling techniques in electromagnetics, in Review of Radio Science 1993–1995, edited by W. R. Stone, pp. 177204, Oxford Univ. Press, New York.
  • Bucci, O. M., and G. Di Massa (1995), Use of characteristic modes in multiple-scattering problems, J. Phys. D Appl. Phys., 28, 22352244.
  • Bucci, O. M., and G. Franceschetti (1987), On the spatial bandwidth of scattered fields, IEEE Trans. Antennas Propag., 35, 14451455.
  • Bucci, O. M., and G. Franceschetti (1989), On the degrees of freedom of scattered fields, IEEE Trans. Antennas Propag., 37, 918926.
  • Bucci, O. M., C. Gennarelli, and C. Savarese (1998), Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples, IEEE Trans. Antennas Propag., 46, 351359.
  • Burkholder, R. J., and J. F. Lee (2004), Fast dual-MGS block-factorization algorithm for dense MoM matrices, IEEE Trans. Antennas Propag., 52, 16931699.
  • Canning, F. X. (1993), Improved impedance matrix location method, IEEE Trans. Antennas Propag., 41, 659667.
  • Chew, W. (1993), Fast algorithms for wave scattering developed at the Univ. of Illinois' Electromagnetics Laboratory, IEEE Antennas Propag. Mag., 35, 2232.
  • Chew, W., J. M. Jin, C. C. Lu, E. Michielssen, and J. M. Song (1997), Fast solution methods in electromagnetics, IEEE Trans. Antennas Propag., 45, 533543.
  • Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou (1992), The fast multipole method (FMM) for electromagnetic scattering problems, IEEE Trans. Antennas Propag., 40, 634641.
  • Epton, M. A., and B. Dembart (1995), Multipole translation theory for the three dimensional Laplace and Helmholtz equations, SIAM J. Sci. Comput., 16, 865897.
  • Gohberg, I. C., and M. G. Krein (1969), Introduction to the Theory of Linear Nonselfadjoint Operators, Am. Math. Soc., Providence, R. I.
  • Golik, W. L. (2000), Sparsity and conditioning of impedance matrices obtained with semi-orthogonal and bi-orthogonal wavelet bases, IEEE Trans. Antennas Propag., 48, 473481.
  • Harrington, R., and J. Mautz (1971), Theory of characteristic modes for conducting bodies, IEEE Trans. Antennas Propag., 19, 622628.
  • Harrington, R., and J. Mautz (1985), Characteristic modes for aperture problems, IEEE Trans. Microwave Theory Tech., 33, 500505.
  • Harrington, R., J. Mautz, and Y. Chang (1972), Characteristic modes for dielectric and magnetic bodies, IEEE Trans. Antennas Propag., 20, 194198.
  • Kaklamani, D. I., and H. T. Anastassiu (2002), Aspects of the method of auxiliary sources (MAS) in computational electromagnetics, IEEE Antennas Propag. Mag., 44, 4864.
  • Kapur, S., and D. E. Long (1998), IES3: Efficient electrostatic and electromagnetic simulations, IEEE Comput. Sci. Eng. Mag., 5, 6067.
  • Kupradze, V. D. (1967), On the approximate solutions of problems in mathematical physics, Russ. Math. Surv., 22, 58108.
  • Kwon, D. H., R. J. Burkholder, and P. H. Pathak (2001), Efficient method of moments formulation for large PEC scattering problems using asymptotic phasefront extraction (APE), IEEE Trans. Antennas Propag., 49, 583591.
  • Leviatan, Y. (1990), Analytic continuation considerations when using generalised formulations for scattering problems, IEEE Trans. Antennas Propag., 38, 12591263.
  • Leviatan, Y., and A. Boag (1987), Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model, IEEE Trans. Antennas Propag., 35, 11191127.
  • Lu, C. C., and W. C. Chew (1994), A multilevel algorithm for solving boundary integral equations of wave scattering, Microwave Opt. Technol. Lett., 7, 466470.
  • Matekovits, L., G. Vecchi, G. Dassano, and M. Orefice (2001), Synthetic function analysis of large printed structures: The solution space sampling approach, 2001 Antennas and Propagation Society International Symposium, Inst. of Electr. and Electron. Eng., Boston, Mass.
  • Pirinoli, P., G. Vecchi, and L. Matekovits (2001), Multiresolution analysis of printed antennas and circuits: A dual-isoscalar approach, IEEE Trans. Antennas Propag., 49, 858874.
  • Prakash, V. V. S., and R. Mittra (2003), Characteristic basis function method: A new technique for fast solution of integral equations, Microwave Opt. Technol. Lett., 36, 95100.
  • Shubitidze, F., H. T. Anastassiu, and D. I. Kaklamani (2004), An improved accuracy version of the method of auxiliary sources for computational electromagnetics, IEEE Trans. Antennas Propag., 52, 302309.
  • Song, J., C. Lu, and W. Chew (1997), Multilevel fast multipole algorithm for electromagnetic scattering by large objects, IEEE Trans. Antennas Propag., 45, 14881493.
  • Su, C., and T. K. Sarkar (2002), Adaptive multiscale moment method (AMMM) for analysis of scattering from three-dimensional perfectly conducting structures, IEEE Trans. Antennas Propag., 50, 444450.
  • Sun, Y. F., C. H. Chan, R. Mittra, and L. Tsang (2003), Characteristic basis functions for solving large problems arising in dense medium scattering, IEEE Trans. Antennas Propag., 51, 2227.
  • Suter, E., and J. Mosig (2000), A subdomain multilevel approach for the MoM analysis of large planar antennas, Microwave Opt. Technol. Lett., 26, 270277.
  • Taylor, A. E. (1958), Introduction to Functional Analysis, John Wiley, Hoboken, N. J.
  • Tiberi, G., S. Rosace, A. Monorchio, G. Manara, and R. Mittra (2003), Electromagnetic scattering from large faceted conducting bodies by using analytically derived characteristic basis functions, Antennas Wireless Propag. Lett., 2, 290293.
  • Zaridze, K. S., and D. Karkasbadze (1986), The method of auxiliary sources in applied electrodynamics, paper presented at URSI Symposium, Union Radio Sci. Int., Budapest.
  • Zaridze, K. S., R. Jobava, G. B. Banik, D. Karkasbadze, D. P. Economou, and N. K. Uzunoglu (1998), The method of auxiliary sources and scattered field singularities (caustics), J. Electromagn. Waves Appl., 12, 14911507.