SEARCH

SEARCH BY CITATION

References

  • Abramowitz, M., and I. E. Stegun (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U.S. Gov. Print. Off., Washington, D. C.
  • Agrest, M. M., and M. S. Maksimov (1971), Theory of Incomplete Cylindrical Functions and Their Applications, Springer, New York.
  • du Toit, C. F. (1990), The numerical computation of Bessel functions of the first and second kind for integer orders and complex arguments, IEEE Trans. Antennas Propag., 38(9), 13411349.
  • Dvorak, S. L. (1994a), Applications for incomplete Lipschitz-Hankel integrals in electro-magnetics, IEEE Antennas Propag. Mag., 36(6), 2632.
  • Dvorak, S. L. (1994b), Exact, closed-form field expressions for two-dimensional, traveling-wave current strips, IEEE Trans. Antennas Propag., 42(12), 16391645.
  • Dvorak, S. L., and E. F. Kuester (1990b), Numerical computation of the incomplete Lipschitz-Hankel integral Je0(a, z), J. Comput. Phys., 87(2), 301327.
  • Dvorak, S. L., and H. Y. Pao (2005), A new solution for the problem of plane wave diffraction by a 2-D aperture in a ground plane, IEEE Trans. Antennas Propag., 53(7), 22992306.
  • Gradshteyn, I. S., and I. M. Ryzhik (1980), Table of Integrals, Series, and Products, Elsevier, New York.
  • Heckmann, D. L., and S. L. Dvorak (1999), Novel closed-form expressions for MoM impedance matrix elements for numerical modeling of shielded passive components, IEEE Trans. Magn., 35(3), 15341537.
  • Heckmann, D. L., and S. L. Dvorak (2001), Numerical computation of Hankel functions of integer order for complex-valued arguments, Radio Sci., 36(6), 12651270.
  • Kabir, S., S. L. Dvorak, and J. L. Prince (2001), Reaction analysis in stripline circuits, IEEE Trans. Adv. Packag., 24(3), 347356.
  • Mechaik, M. M., and S. L. Dvorak (1995), Series expansions for the incomplete Lipschitz-Hankel integral Je0(a, z), Radio Sci., 30(5), 13931404.
  • Mechaik, M. M., and S. L. Dvorak (1996), Series expansions for the incomplete Lipschitz-Hankel integral Ye0(a, z), Radio Sci., 31(2), 409422.
  • Olver, F. W. J. (1967), Numerical solution of second-order linear difference equations, J. Res. Natl. Bur. Stand. U.S., Sect. B, 71, 111129.
  • Olver, F. W. J., and D. J. Sookne (1972), Note on backward recurrence algorithms, Math. Comput., 26, 941947.
  • Pao, H.-Y., S. L. Dvorak, and D. G. Dudley (1996a), An accurate and efficient analysis for transient plane waves obliquely incident on a conductive half space (TE case), IEEE Trans. Antennas Propag., 44(7), 918924.
  • Pao, H.-Y., S. L. Dvorak, and D. G. Dudley (1996b), An accurate and efficient analysis for transient plane waves obliquely incident on a conductive half space (TM case), IEEE Trans. Antennas Propag., 44(7), 925932.
  • Pao, H.-Y., Z. Zhu, and S. L. Dvorak (2004), Exact, closed-form expressions for the time-domain surface impedances of a homogeneous, lossy half-space, IEEE Trans. Antenna Propag., 52(10), 26592665.
  • Watson, G. N. (1944), A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press, New York.
  • Zhou, T., S. L. Dvorak, and J. L. Prince (2003), Lossy transmission line simulation based on closed-form triangle impulse responses, IEEE Trans. Comput. Aided Design Integ. Circuits Syst., 22(6), 748755.