SEARCH

SEARCH BY CITATION

References

  • Beven, K. J. (2000), Uniqueness of place and the representation of hydrological processes, Hydrol. Earth Syst. Sci., 4, 203213.
  • Beven, K. (2002), Towards a coherent philosophy for modeling the environment, Proc. R. Soc. London, Ser. A, 458, 24652484.
  • Beven, K. J., and P. C. Young (2003), Comment on “Bayesian recursive parameter estimation for hydrologic models” by M. Thiemann et al. Water Resour. Res., 39(5), 1116, doi:10.1029/2001WR001183.
  • Breiman, L. (1996), Bagging predictors, Mach. Learning, 24(2), 123140.
  • Breiman, L. (2001a), Random forests, Mach. Learning, 45(1), 532.
  • Breiman, L. (2001b), Using iterated bagging to debias regressions, Mach. Learning, 45(3), 261277.
  • Breiman, L., J. Friedman, R. Olshen, and C. Stone (1984), Classification and Regression Trees, Wadsworth, Belmont, Calif.
  • Esposito, F., D. Malerba, and G. Semeraro (1997), A comparative analysis of methods for pruning decision trees, IEEE Trans. Pattern Anal. Mach. Intell., 19(5), 476491.
  • Freer, J. E., K. J. Beven, and N. E. Peters (2003), Multivariate seasonal period model rejection within the generalised likelihood uncertainty estimation procedure, in Calibration of Watershed Models, Water Sci. Appl. Ser., vol. 6, edited by Q. Duan et al., pp. 6987, AGU, Washington, D. C.
  • Friedman, J. H. (1991), Multivariate adaptive regression splines, Ann. Stat., 19(1), 167.
  • Friedman, J. H. (1994), Flexible metric nearest neighbour classification, Tech. Rep. 113, 32 pp., Dep. of Stat., Stanford Univ., Stanford, Calif.
  • Gelfand, S. B., C. S. Ravishankar, and E. J. Delp (1991), An iterative growing and pruning algorithm for classification tree design, IEEE Trans. Pattern Anal. Mach. Intell., 13(2), 163174.
  • Gupta, H. V., S. Sorooshian, and P. O. Yapo (1998), Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information, Water Resour. Res., 34(4), 751763.
  • Harr, R. D. (1977), Water flux in soil and subsoil in a steep forested slope, J. Hydrol., 33, 3758.
  • Harr, R. D., A. Levno, and R. Mersereau (1982), Streamflow changes after logging 130-year-old Douglas fir in two small watersheds, Water Resour. Res., 18(3), 637644.
  • Hornberger, G. M., K. J. Beven, B. J. Cosby, and D. E. Sappington (1985), Shenandoah watershed study: A calibration of a topography-based, variable contributing area hydrological model to a small forested catchment, Water Resour. Res., 21(12), 18411850.
  • Hsu, K., H. V. Gupta, X. Gao, S. Sorooshian, and B. Imam (2002), Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis, Water Resour. Res., 38(12), 1302, doi:10.1029/2001WR000795.
  • Jakeman, A. J., and G. M. Hornberger (1993), How much complexity is warranted in a rainfall-runoff model? Water Resour. Res., 29(8), 26372649.
  • Jones, J. A., and G. E. Grant (1996), Peak flow responses to clear- cutting and roads in small and large basins, western Cascades, Oregon, Water Resour. Res., 32(4), 959974.
  • Kavetski, D., G. Kuczera, and S. W. Franks (2003), Semidistributed hydrological modeling: A “saturation path” perspective on TOPMODEL and VIC, Water Resour. Res., 39(9), 1246, doi:10.1029/2003WR002122.
  • Kirkby, M. J. (1975), Hydrograph modeling strategies, in Processes in Physical and Human Geography, edited by R. Peel, M. Chisholm, and P. Haggett, pp. 6990, Heinemann Educ., London.
  • Quinlan, J. R. (1993), Combining instance-based and model-based learning, in Proceedings of the Tenth International Conference of Machine Learning, pp. 236243, Morgan Kaufmann, Burlington, Mass.
  • Schaal, S. (1994), Non-parametric regression for learning, in Proceedings of the Conference on Adaptive Behaviour and Learning, pp. 123133, Cent. for Interdisciplinary Res., Univ. of Bielefeld, Bielefeld, Germany.
  • Sjöberg, J., Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, P.-Y. Glorennec, H. Hjalmarsson, and A. Juditsky (1995), Non-linear black-box modeling in system identification: A unified overview, Automatica, 31(12), 16911724.
  • Sorooshian, S., and J. A. Dracup (1980), Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases, Water Resour. Res., 16(2), 430442.
  • Spear, R. C., T. M. Grieb, and N. Shang (1994), Parameter uncertainty and interaction in complex environmental models, Water Resour. Res., 30(11), 31593169.
  • Suárez, A., and J. F. Lutsko (1999), Globally optimal fuzzy decision trees for classification and regression, IEEE Trans. Pattern Anal. Mach. Intell., 21, 12971311.
  • Wagener, T., N. McIntyre, M. J. Lees, H. S. Wheater, and H. V. Gupta (2003), Towards reduced uncertainty in conceptual rainfall-runoff modeling: Dynamic identifiability analysis, Hydrol. Processes, 17(2), 455476.
  • Waichler, S. R., M. S. Wigmosta, and B. C. Temple (2002), Simulation of water balance and forest treatment effects at the H. J. Andrews experimental forest, Tech. Rep. PNWD-3180, 97 pp., Pac. Northwest Natl. Lab., Richland, Wash.
  • Wigmosta, M. S., L. V. Vail, and D. P. Lettenmaier (1994), A distributed hydrology vegetation model for complex terrain, Water Resour. Res., 30(6), 16651679.
  • Yapo, P. O., H. V. Gupta, and S. Sorooshian (1996), Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data, J. Hydrol., 181, 2348.
  • Young, P. C. (2001), Data-based mechanistic modeling and validation of rainfall-flow processes, in Model Validation: Perspectives in Hydrological Science, edited by M. G. Anderson, and P. D. Bates, pp. 117161, John Wiley, Hoboken, N. J.