SEARCH

SEARCH BY CITATION

References

  • Aris, R. (1958), On the dispersion of linear kinematic waves, Proc. R. Soc. London, Ser. A, 245, 268277.
  • Bear, J. (1972), Dynamics of Fluids in Porous Media, Dover, Mineola, N. Y.
  • Bishop, D., D. Rice, L. Rogers, and C. Webster-Scholten (1990), Comparison of field-based distribution coefficients (Kd's) and retardation factors (R's) to laboratory and other determinations of Kd's, Rep. UCRL-AR-105002, Lawrence Livermore Natl. Lab., Livermore, Calif.
  • Brusseau, M. L., and P. S. C. Rao (1989), Sorption nonideality during organic contaminant transport in porous medium, Crit. Rev. Environ. Control, 19(1), 3399.
  • Burr, D. T., E. A. Sudicky, and R. L. Naff (1994), Nonreactive and reactive solute transport in three-dimensional heterogeneous porous media: Mean displacement, plume spreading, and uncertainty, Water Resour. Res., 30(3), 791815.
  • Chao, C.-H. (2000), Scale dependence of transport parameters estimated from forced-gradient tracer tests in heterogeneous formations, Ph.D. thesis, Univ. of Colo., Boulder.
  • Chao, C.-H., H. Rajaram, and T. H. Illangasekare (2000), Intermediate-scale experiments and numerical simulations of transport under radial flow in a two-dimensional heterogeneous porous medium, Water Resour. Res., 36(10), 28692884.
  • Dagan, G. (1989), Flow and Transport in Porous Formations, 461 pp., Springer, New York.
  • Dentz, M., H. Kinzelbach, S. Attinger, and W. Kinzelbach (2000), Temporal behavior of a solute cloud in a heterogeneous porous medium: 1. Point-like injection, Water Resour. Res., 36(12), 35913604.
  • Fadili, A., R. Ababou, and R. Lenormand (1999), Dispersive particle transport: Identification of macroscale behavior in heterogeneous stratified subsurface flows, Math. Geol., 31(7), 793840.
  • Fernàndez-Garcia, D. (2003), Scale-dependence of non-reactive and sorptive transport parameters estimated from radial and uniform flow tracer tests in heterogeneous formations: Experimental and numerical investigations, Ph.D. thesis, 396 pp., Colo. Sch. of Mines, Golden.
  • Fernàndez-Garcia, D., T. H. Illangasekare, and H. Rajaram (2004), Conservative and sorptive forced-gradient and uniform flow tracer tests in a three-dimensional laboratory test aquifer, Water Resour. Res., 40, W10103, doi:10.1029/2004WR003112.
  • Fernàndez-Garcia, D., T. H. Illangasekare, and H. Rajaram (2005), Differences in the scale dependence of dispersivity estimated from temporal and spatial moments in chemically and physically heterogeneous porous media, Adv. Water Resour., in press.
  • Freeze, R. A., and J. A. Cherry (1979), Groundwater, Prentice-Hall, Upper Saddle River, N. J.
  • Freyberg, D. L. (1986), A natural gradient experiment on solute transport in a sand aquifer: 2. Spatial moments and the advection and dispersion of nonreactive tracers, Water Resour. Res., 22(13), 20312046.
  • Garabedian, S. P., L. W. Gelhar, and M. A. Celia (1988), Large-scale dispersive transport in aquifers: Field experiments and reactive transport theory, Rep. 315, Ralph M. Parsons Lab., Dep. of Civ. Eng., Mass. Inst. of Technol., Cambridge.
  • Garabedian, S. P., D. R. LeBlanc, L. W. Gelhar, and M. A. Celia (1991), Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 2. Analysis of spatial moments for a nonreactive tracer, Water Resour. Res., 27(5), 911924.
  • Gelhar, L. W., A. L. Gutjahr, and R. L. Naff (1979), Stochastic analysis of macrodispersion in a stratified aquifer, Water Resour. Res., 15(6), 13871397.
  • Goltz, M. N., and P. V. Roberts (1987), Using the method of moments to analyze three-dimensional diffusion-limited solute transport from temporal and spatial perspectives, Water Resour. Res., 23(8), 15751585.
  • Harbaugh, A. W., E. R. Banta, M. C. Hill, and M. G. McDonald (2000), MODFLOW-2000, the U.S. Geological Survey modular ground-water model—User guide to modularization concepts and the ground-water flow process, U.S. Geol. Surv. Open File Rep., 00-92.
  • Indelman, P., and G. Dagan (1999), Solute transport in divergent radial flow through heterogeneous porous media, J. Fluid Mech., 384, 159182.
  • Kabala, Z. J., and G. A. Sposito (1991), A stochastic model of reactive solute transport with time-varying velocity in a heterogeneous aquifer, Water Resour. Res., 27(3), 341350.
  • Kendall, M., and A. Stuart (1977), The Advanced Theory of Statistics, Macmillan, New York.
  • Labolle, E. M., G. E. Fogg, and A. F. B. Tompson (1996), Random-walk simulation of transport in heterogeneous porous media: Local mass-conservation problem and implementation methods, Water Resour. Res., 32(3), 583593.
  • LeBlanc, D. R., S. P. Garabedian, K. M. Hess, L. W. Gelhar, R. D. Quadri, K. G. Stollenwerk, and W. W. Wood (1991), Large-scale natural gradient tracer test in sand and gravel, Cape Code, Massachusetts: 1. Experimental design and observed tracer movement, Water Resour. Res., 27(5), 895910.
  • Lichtner, P. C., S. Kelkar, and B. Robinson (2002), New form of dispersion tensor for axisymmetric porous media with implementation in particle tracking, Water Resour. Res., 38(8), 1146, doi:10.1029/2000WR000100.
  • Mackay, D. M., D. L. Freyberg, P. V. Roberts, and J. A. Cherry (1986), A natural gradient experiment on solute transport in a sand aquifer: 1. Approach and overview of plume movement, Water Resour. Res., 22(13), 20172029.
  • Mackay, D. M., G. Bianchi-Mosquera, A. A. Kopania, H. Kianjah, and K. W. Thorbjarnarson (1994), A forced-gradient experiment and solute transport in the Borden aquifer: 1. Experimental methods and moment analysis of results, Water Resour. Res., 30(2), 369383.
  • Matheron, G., and G. de Marsily (1980), Is transport in porous media always diffusive? A counterexample, Water Resour. Res., 16(5), 901917.
  • McKenna, S., L. C. Meigs, and R. Haggerty (2001), Tracer tests in a fractured dolomite: 3. Double-porosity, multiple-rate mass transfer processes in convergent flow tracer tests, Water Resour. Res., 37(5), 11431154.
  • Miralles-Wilhelm, F., and L. W. Gelhar (1996), Stochastic analysis of sorption macrokinetics in heterogeneous aquifers, Water Resour. Res., 32(6), 15411549.
  • Naff, R. L. (1990), On the nature of the dispersive flux in saturated heterogeneous porous media, Water Resour. Res., 26(5), 10131026.
  • Naff, R. L., D. F. Haley, and E. A. Sudicky (1998), High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 1. Methodology and flow results, Water Resour. Res., 34(4), 663677.
  • Rajaram, H. (1997), Time and scale dependent effective retardation factors in heterogeneous aquifers, Adv. Water Resour., 20(4), 217230.
  • Rajaram, H., and L. W. Gelhar (1993), Plume scale-dependent dispersion in heterogeneous aquifers: 2. Eulerian analysis and three-dimensional aquifers, Water Resour. Res., 29(9), 32613276.
  • Reimus, P., G. Pohll, T. Mihevc, J. Chapman, M. Haga, B. Lyles, S. Kosinski, R. Niswonger, and P. Sanders (2003), Testing and parameterizing a conceptual model for solute transport in a fractured granite using multiple tracers in a forced-gradient test, Water Resour. Res., 39(12), 1356, doi:10.1029/2002WR001597.
  • Roberts, P. V., M. N. Goltz, and D. M. Mackay (1986), A natural gradient experiment on solute transport in a sand aquifer: 3. Retardation estimates and mass balance for organic solutes, Water Resour. Res., 22(13), 20472057.
  • Robin, M. J. L., E. A. Sudicky, R. W. Gillham, and R. G. Kachanoski (1991), Spatial variability of strontium distribution coefficients and their correlation with hydraulic conductivity in the Canadian forces base Borden aquifer, Water Resour. Res., 27(10), 26192632.
  • Rubin, Y., and G. Dagan (1988), Stochastic analysis of boundary effects on head spatial variability in heterogeneous aquifers: 1. Constant head boundary, Water Resour. Res., 24(10), 16891697.
  • Rubin, Y., and G. Dagan (1989), Stochastic analysis of boundary effects on head spatial variability in heterogeneous aquifers: 2. Impervious boundary, Water Resour. Res., 25(4), 707712.
  • Stumm, W. (1992), Chemistry of the Solid-Water Interface, 428 pp., Wiley-Interscience, Hoboken, N. J.
  • Sudicky, E. A. (1986), A natural gradient tracer experiment on solute transport in a sand and gravel aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process, Water Resour. Res., 22(13), 20692082.
  • Tiedeman, C. R., and P. A. Hsieh (2004), Evaluation of longitudinal dispersivity estimates from simulated forced- and natural-gradient tracer tests in heterogeneous aquifers, Water Resour. Res., 40, W01512, doi:10.1029/2003WR002401.
  • Tompson, A. F. B. (1993), Numerical simulation of chemical migration in physically and chemically heterogeneous porous media, Water Resour. Res., 29(11), 37093726.
  • Tompson, A. F. B., R. Ababou, and L. W. Gelhar (1989), Implementation of the three-dimensional turning bands random field generator, Water Resour. Res., 25(10), 22272243.
  • Valocchi, A. (1985), Validity of the local equilibrium assumption for modeling sorbing solute transport through homogeneous soils, Water Resour. Res., 21(6), 808820.
  • Valocchi, A. (1986), Effect of radial flow on deviations from local equilibrium during sorbing solute transport through homogeneous soils, Water Resour. Res., 22(12), 16931701.
  • Vanderborght, J., D. Mallants, and J. Feyen (1998), Solute transport in a heterogeneous soil for boundary and initial conditions: Evaluation of first-order approximations, Water Resour. Res., 34(12), 32553270.
  • Wen, X. H., and J. J. Gómez-Hernández (1996), The constant displacement scheme for tracking particles in heterogeneous aquifers, Ground Water, 34(1), 135142.