SEARCH

SEARCH BY CITATION

References

  • Amin, I. E., and M. E. Campana (1996), A general lumped parameter model for the interpretation of tracer data and transit time calculation in hydrologic systems, J. Hydrol., 179, 121.
  • Anderson, S. P., W. E. Dietrich, D. R. Montgomery, R. Torres, M. E. Conrad, and K. Loague (1997), Subsurface flow paths in a steep, unchanneled catchment, Water Resour. Res., 33, 26372653.
  • Asano, Y., T. Uchida, and N. Ohte (2002), Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan, J. Hydrol., 261, 173192.
  • Bard, Y. (1974), Nonlinear Parameter Estimation, 341 pp., Elsevier, New York.
  • Berris, S. N., and R. D. Harr (1987), Comparative snow accumulation and melt during rainfall in forested and clear-cut plots in the western Cascades of Oregon, Water Resour. Res., 23, 135142.
  • Bethke, C. M., and T. M. Johnson (2002), Technical commentary: Ground water age, Ground Water, 40(4), 337339.
  • Beven, K. J., and M. J. Kirkby (1979), A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24(1), 4369.
  • Bonell, M. (1998), Selected challenges in runoff generation research in forests from the hillslope to headwater drainage basin scale, J. Am. Water Resour. Assoc., 34(4), 765786.
  • Burgman, J. O., B. Calles, and F. Westman (1987), Conclusions from a ten year study of oxygen-18 in precipitation and runoff in Sweden, in Isotope Techniques in Water Resources Development, an International Symposium, pp. 579590, Int. At. Energy Agency, Vienna.
  • Burns, D. A., and J. J. McDonnell (1998), Effects of a beaver pond on runoff processes: Comparison of two headwater catchments, J. Hydrol., 205, 248264.
  • Burns, D. A., P. S. Murdoch, G. B. Lawrence, and R. L. Michel (1998), Effect of groundwater springs on NO3 concentrations during summer in Catskill Mountain streams, Water Resour. Res., 34, 19871996.
  • Burns, D. A., et al. (2003), The geochemical evolution of riparian ground water in a forested piedmont catchment, Ground Water, 41(7), 913925.
  • Buttle, J. M. (1994), Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins, Prog. Phys. Geogr., 18(1), 1641.
  • Buttle, J. M., P. W. Hazlett, C. D. Murray, I. F. Creed, D. S. Jeffries, and R. Semkin (2001), Prediction of groundwater characteristics in forested and harvested basins during spring snowmelt using a topographic index, Hydrol. Processes, 15, 33893407.
  • Chorley, R. J., S. A. Schumm, and D. E. Sugden (1985), Geomorphology, 605 pp., Methuen, London.
  • Clark, I. D., and P. Fritz (1997), Environmental Isotopes in Hydrogeology, 328 pp., A. F. Lewis, Boca Raton, Fla.
  • Coleman, T. F., and Y. Li (1994), On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds, Math. Program., 67(2), 189224.
  • Dansgaard, W. (1964), Stable isotopes in precipitation, Tellus, 16, 436438.
  • DeWalle, D. R., P. J. Edwards, B. R. Swistock, R. Aravena, and R. J. Drimmie (1997), Seasonal isotope hydrology of three Appalachian forest catchments, Hydrol. Processes, 11, 18951906.
  • Dinçer, T., and G. H. Davis (1984), Application of environmental isotope tracers to modeling in hydrology, J. Hydrol., 68, 95113.
  • Dinçer, T., B. R. Payne, T. Florkowski, J. Martinec, and E. G. E. I. Tongiorgi (1970), Snowmelt runoff from measurements of tritium and oxygen-18, Water Resour. Res., 6, 110124.
  • Donaldson, J. R., and R. B. Schnabel (1987), Computational experience with confidence regions and confidence intervals for nonlinear least squares, Technometrics, 29(1), 6782.
  • Dooge, J. C. I. (1973), Linear Theory of Hydrologic Systems, 327 pp., U.S. Gov. Print. Off., Washington, D. C.
  • Dyrness, C. T. (1969), Hydrologic properties of soils on three small watersheds in the western Cascades of Oregon, Res. Note PNW-111, Pac. Northwest For. and Range Exp. Stn., For. Serv., U.S. Dep. of Agric., Portland, Oreg.
  • Epstein, S., and T. Mayeda (1953), Variation of 18O content of water from natural sources, Geochim. Cosmochim. Acta, 4, 213224.
  • Etcheverry, D., and P. Perrochet (1999), Reservoir theory, groundwater transit time distributions, and lumped parameter models, paper presented at International Symposium on Isotope Techniques in Water Resources Development and Management, Int. At. Energy Agency, Vienna, 10 – 14 May .
  • Fritz, P. (1981), River waters, in Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle, Tech. Rep. Ser. 210, edited by J. Gat, and R. Gonfiantini, pp. 177201, Int. At. Energy Agency, Vienna.
  • Gibson, J. J., et al. (2002), Isotope studies in large river basins: A new global research focus, Eos Trans. AGU, 83(52), 616.
  • Grabczak, J., P. Maloszewski, K. Rozanski, and A. Zuber (1984), Estimation of the tritium input function with the aid of stable isotopes, Catena, 11, 105114.
  • Haggerty, R., S. W. Fleming, L. C. Meigs, and S. A. McKenna (2001), Tracer tests in a fractured dolomite: 2. Analysis of mass transfer in single-well injection-withdrawal tests, Water Resour. Res., 37, 11291142.
  • Haitjema, H. M. (1995), On the residence time distribution in idealized groundwatersheds, J. Hydrol., 172(1–4), 127146.
  • Harr, R. D. (1977), Water flux in soil and subsoil on a steep forested slope, J. Hydrol., 33, 3758.
  • Harr, R. D. (1986), Effects of clearcutting on rain-on-snow runoff in western Oregon: A new look at old studies, Water Resour. Res., 22, 10951100.
  • Harr, R. D., and F. M. McCorison (1979), Initial effects of clearcut logging on size and timing of peak flows in a small watershed in western Oregon, Water Resour. Res., 15, 9094.
  • Herrmann, A., S. Bahls, W. Stichler, F. Gallart, and J. Latron (1999), Isotope hydrological study of mean transit times and related hydrogeological conditions in Pyrenean experimental basins (Vallcebre, Catalonia), in Integrated Methods in Catchment Hydrology—Tracer, Remote Sensing, and New Hydrometric Techniques (Proceedings of IUGG 99 Symposium HS4), edited by C. Leibundgut, J. McDonnell, and G. Schultz, IAHS Publ., 258, 101110.
  • Hewlett, J. D., and A. R. Hibbert (1967), Factors affecting the response of small watersheds to precipitation in humid areas, in Forest Hydrology, edited by W. E. Sopper, and H. W. Lull, pp. 275291, Elsevier, New York.
  • Hooper, R. P. (2001), Applying the scientific method to small catchment studies: A review of the Panola Mountain experience, Hydrol. Processes, 15, 20392050.
  • Hooper, R. P. (2004), Designing observatories for the hydrologic sciences, Eos Trans. AGU, 85(17), Jt. Assem. Suppl., Abstract H24B-04.
  • Hornberger, G. M., T. M. Scanlon, and J. P. Raffensperger (2001), Modelling transport of dissolved silica in a forested headwater catchment: The effect of hydrological and chemical time scales on hysteresis in the concentration-discharge relationship, Hydrol. Processes, 15, 20292038.
  • Ingraham, N. L. (1998), Isotopic variation in precipitation, in Isotope Tracers in Catchment Hydrology, edited by C. Kendall, and J. J. McDonnell, pp. 87118, Elsevier, New York.
  • Jones, J. A. (2000), Hydrologic processes and peak discharge response to forest removal, regrowth, and roads in 10 small experimental basins, western Cascades, Oregon, Water Resour. Res., 36, 26212642.
  • Jones, J. A., and G. E. Grant (1996), Peak flow responses to clear-cutting and roads in small and large basins, western Cascades, Oregon, Water Resour. Res., 32, 959974.
  • Kendall, C., and J. J. McDonnell (1998), Isotope Tracers in Catchment Hydrology, 839 pp., Elsevier, New York.
  • Kirchner, J. W. (2003), A double paradox in catchment hydrology and geochemistry, Hydrol. Processes, 17, 871874.
  • Kirchner, J. W., X. Feng, and C. Neal (2000), Fractal stream chemistry and its implications for contaminant transport in catchments, Nature, 403(6769), 524527.
  • Kirchner, J. W., X. Feng, and C. Neal (2001), Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations, J. Hydrol., 254, 82101.
  • Knopman, D. S., and C. I. Voss (1987), Behavior of sensitivities in the one-dimensional advection-dispersion equation: Implications for parameter estimation and sampling design, Water Resour. Res., 23(2), 253272.
  • Kreft, A., and A. Zuber (1978), On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions, Chem. Eng. Sci., 33, 14711480.
  • Legard, H. A., and L. C. Meyer (1973), Soil Resource Inventory, Atlas of Maps and Interpretive Tables, Willamette National Forest, Pac. Northwest Region, U.S. For. Serv., Portland, Oreg.
  • Lindgren, G. A., G. Destouni, and A. V. Miller (2004), Solute transport through the integrated groundwater-stream system of a catchment, Water Resour. Res., 40, W03511, doi:10.1029/2003WR002765.
  • Lindström, G., and A. Rodhe (1986), Modelling water exchange and transit times in till basins using oxygen-18, Nord. Hydrol., 17(4–5), 325334.
  • Maloszewski, P., and A. Zuber (1982), Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability, J. Hydrol., 57, 207231.
  • Maloszewski, P., and A. Zuber (1993), Principles and practice of calibration and validation of mathematical models for the interpretation of environmental tracer data, Adv. Water Resour., 16, 173190.
  • Maloszewski, P., and A. Zuber (1998), A general lumped parameter model for the interpretation of tracer data and transit time calculation in hydrologic systems (Journal of Hydrology 179 (1996) 1–21), comments, J. Hydrol., 204, 297300.
  • Maloszewski, P., W. Rauert, W. Stichler, and A. Herrmann (1983), Application of flow models in an alpine catchment area using tritium and deuterium data, J. Hydrol., 66, 319330.
  • Maloszewski, P., W. Rauert, P. Trimborn, A. Herrmann, and R. Rau (1992), Isotope hydrological study of mean transit times in an alpine basin (Wimbachtal, Germany), J. Hydrol., 140, 343360.
  • McDonnell, J. J., M. K. Stewart, and I. F. Owens (1991), Effect of catchment-scale subsurface mixing on stream isotopic response, Water Resour. Res., 27, 30653073.
  • McDonnell, J., L. K. Rowe, and M. K. Stewart (1999), A combined tracer-hydrometric approach to assess the effect of catchment scale on water flow path, source and age, in Integrated Methods in Catchment Hydrology—Tracer, Remote Sensing, and New Hydrometric Techniques (Proceedings of IUGG 99 Symposium HS4), edited by C. Leibundgut, J. McDonnell, and G. Schultz, IAHS Publ., 258, 265273.
  • McGlynn, B. L., and J. Seibert (2003), Distributed assessment of contributing area and riparian buffering along stream networks, Water Resour. Res., 39(4), 1082, doi:10.1029/2002WR001521.
  • McGlynn, B. L., J. J. McDonnell, and D. D. Brammer (2002), A review of the evolving perceptual model of hillslope flowpaths at the Maimai catchments, New Zealand, J. Hydrol., 257, 126.
  • McGlynn, B., J. McDonnell, M. Stewart, and J. Seibert (2003), On the relationships between catchment scale and streamwater mean residence time, Hydrol. Processes, 17, 175181.
  • McGuire, K. J., D. R. DeWalle, and W. J. Gburek (2002), Evaluation of mean residence time in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians, J. Hydrol., 261, 132149.
  • Melhorn, J., and C. Leibundgut (1999), The use of tracer hydrological time parameters to calibrate baseflow in rainfall-runoff modelling, in Integrated Methods in Catchment Hydrology—Tracer, Remote Sensing, and New Hydrometric Techniques (Proceedings of IUGG 99 Symposium HS4), edited by C. Leibundgut, J. McDonnell, and G. Schultz, IAHS Publ., 258, 119125.
  • Montgomery, D. R., and W. E. Dietrich (1988), Where do channels begin? Nature, 336, 232234.
  • Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models, I, A discussion of principles, J. Hydrol., 10, 282290.
  • Pearce, A. J., M. K. Stewart, and M. G. Sklash (1986), Storm runoff generation in humid headwater catchments: 1. Where does the water come from? Water Resour. Res., 22, 12631272.
  • Ranken, D. W. (1974), Hydrologic properties of soil and subsoil on a steep, forested slope, M.S. thesis, Oreg. State Univ., Corvallis.
  • Ratkowsky, D. A. (1990), Handbook of Nonlinear Regression Models, 241 pp., CRC Press, Boca Raton, Fla.
  • Richey, D. G., J. J. McDonnell, M. W. Erbe, and T. M. Hurd (1998), Hydrochemical separation based on chemical and isotopic concentrations: A critical appraisal of published studies from New Zealand, North America, and Europe, J. Hydrol. N. Z., 37(2), 95111.
  • Richter, J., P. Szymczak, T. Abraham, and H. Jordan (1993), Use of combinations of lumped parameter models to interpret groundwater isotopic data, J. Contam. Hydrol., 14(1), 113.
  • Rodgers, P., C. Soulsby, and S. Waldron (2005), Stable isotope tracers as diagnostic tools in upscaling flow path understanding and residence time estimates in a mountainous mesoscale catchment, Hydrol. Processes, in press.
  • Rodhe, A., L. Nyberg, and K. Bishop (1996), Transit times for water in a small till catchment from a step shift in the oxygen 18 content of the water input, Water Resour. Res., 32(12), 34973511.
  • Rothacher, J. (1965), Streamflow from small watersheds on the western slope of the Cascade Range of Oregon, Water Resour. Res., 1, 125134.
  • Rothacher, J., C. T. Dyrness, and R. L. Fredriksen (1967), Hydrologic and related characteristics of three small watersheds in the Oregon Cascades, report, Pac. Northwest For. and Range Exp. Stn., For. Serv., U.S. Dep. of Agric., Portland, Oreg.
  • Schumer, R., D. A. Benson, M. M. Meerschaert, and B. Baeumer (2003), Fractal mobile/immobile solute transport, Water Resour. Res., 39(10), 1296, doi:10.1029/2003WR002141.
  • Sherrod, D. R., and J. G. Smith (2000), Geologic map of upper Eocene to Holocene volcanic and related rocks of the Cascade Range, Oregon, U.S. Geol. Surv. Geol. Invest. Ser. Map, I-2569.
  • Sidle, R. C., Y. Tsuboyama, S. Noguchi, I. Hosoda, M. Fujieda, and T. Shimizu (2000), Stormflow generation in steep forested headwaters: A linked hydrogeomorphic paradigm, Hydrol. Processes, 14, 369385.
  • Sivapalan, M. (2003), Process complexity at hillslope scale, process simplicity at the watershed scale: Is there a connection? Hydrol. Processes, 17, 10371041.
  • Sollins, P., C. C. Grier, F. M. McCorison, K. J. Cromack, R. Fogel, and R. L. Fredriksen (1980), The internal element cycles of an old-growth Douglas-fir ecosystem in western Oregon, Ecol. Monogr., 50, 261285.
  • Soulsby, C., R. Malcolm, R. C. Ferrier, R. C. Helliwell, and A. Jenkins (2000), Isotope hydrology of the Allt a'Mharcaidh catchment, Cairngorms, Scotland: Implications for hydrological pathways and residence times, Hydrol. Processes, 14, 747762.
  • Soulsby, C., P. J. Rodgers, J. Petry, D. M. Hannah, I. A. Malcolm, and S. M. Dunn (2004), Using tracers to upscale flow path understanding in mesoscale mountainous catchments: Two examples from Scotland, J. Hydrol., 291, 174196.
  • Stewart, M. K., and J. J. McDonnell (1991), Modeling base flow soil water residence times from deuterium concentrations, Water Resour. Res., 27, 26812693.
  • Strahler, A. N. (1952), Hypsometric (area-altitude) analysis of erosional topography, Geol. Soc. Am. Bull., 63, 11171142.
  • Swanson, F. J., and M. E. James (1975), Geology and geomorphology of the H.J. Andrews Experimental Forest, western Cascades, Oregon, Res. Pap. PNW-188, Pac. Northwest For. and Range Exp. Stn., For. Serv., U.S. Dep. of Agric., Portland, Oreg.
  • Uhlenbrook, S., C. Leibundgut, and P. Maloszewski (2000), Natural tracer for investigating residence times, runoff components and validation of a rainfall-runoff model, in TraM'2000: Conference on Tracer and Modelling in Hydrogeology, IAHS Publ., 262, 465472.
  • Uhlenbrook, S., M. Frey, C. Leibundgut, and P. Maloszewski (2002), Hydrograph separations in a mesoscale mountainous basin at event and seasonal timescales, Water Resour. Res., 38(6), 1096, doi:10.1029/2001WR000938.
  • Uhlenbrook, S., S. Roser, and N. Tilch (2004), Hydrological process representation at the mesoscale: The potential of a distributed, conceptual catchment model, J. Hydrol., 291, 278296.
  • Vitvar, T., and W. Balderer (1997), Estimation of mean water residence times and runoff generation by 18O measurements in a pre-Alpine catchment (Rietholzbach, eastern Switzerland), Appl. Geochem., 12(6), 787796.
  • Weiler, M., B. L. McGlynn, K. J. McGuire, and J. J. McDonnell (2003), How does rainfall become runoff? A combined tracer and runoff transfer function approach, Water Resour. Res., 39(11), 1315, doi:10.1029/2003WR002331.
  • Welker, J. M. (2000), Isotopic (δ18O) characteristics of weekly precipitation collected across the USA: An initial analysis with application to water source studies, Hydrol. Processes, 14, 14491464.
  • Williams, A. G., J. F. Dowd, and E. W. Meyles (2002), A new interpretation of kinematic stormflow generation, Hydrol. Processes, 16, 27912803.
  • Wolock, D. M., J. Fan, and G. B. Lawrence (1997), Effects of basin size on low-flow stream chemistry and subsurface contact time in the Neversink River watershed, New York, Hydrol. Processes, 11, 12731286.
  • Zuber, A. (1986), On the interpretation of tracer data in variable flow systems, J. Hydrol., 86, 4557.