SEARCH

SEARCH BY CITATION

References

  • Burden, R. L., and J. D. Faires (1997), Numerical Analysis, Brooks/Cole, Pacific Grove, Calif.,
  • Burkham, D. E. (1970), A method for relating infiltration rates to streamflow rates in perched streams, U.S. Geol. Surv. Prof. Pap., 700-D, 171266.
  • Chavez, A., S. N. Davis, and S. Sorooshian (1994), Estimation of mountain front recharge to regional aquifers: 1. Development of an analytical hydroclimatic model, Water Resour. Res., 30(7), 21572168.
  • Childs, E. C., and M. Bybordi (1969), The vertical movement of water in stratified porous material: 1. Infiltration, Water Resour. Res., 5(2), 446459.
  • Chow, V. T., D. R. Maidment, and L. W. Mays (1988), Applied Hydrology, McGraw-Hill, New York.
  • Constantz, J., A. E. Stewart, R. Niswonger, and L. Sarma (2002), Analysis of temperature profiles for investigating stream losses beneath ephemeral channels, Water Resour. Res., 38(12), 1316, doi:10.1029/2001WR001221.
  • Cunge, J. A., F. M. Holly, and A. Verway (1980), Practical Aspects of Computational River Hydraulics, Pitman, London.
  • Doherty, J. (2004), PEST: Model-Independent Parameter Estimation, software, Watermark Numer. Comput., Brisbane, Queensl., Australia.
  • Fetter, C. W. (1993), Contaminant Hydrogeology, Macmillan, New York.
  • Freeze, R. A., and J. A. Cherry (1979), Groundwater, Prentice-Hall, Upper Saddle River, N. J.,
  • Freyberg, D. L. (1980), Models of surface-subsurface flow interaction in an ephemeral channel, Ph.D. thesis, 212 pp., Stanford Univ., Stanford, Calif.,
  • Freyberg, D. L., J. W. Reeder, J. B. Franzini, and I. Remson (1980), Application of the Green-Ampt model to infiltration under time-dependent surface water depths, Water Resour. Res., 16(3), 517528.
  • Green, W. A., and G. A. Ampt (1911), Studies in soil physics, I, The flow of air and water through soils, J. Agric. Sci., 4, 124.
  • Harrill, J. A., and D. E. Prudic (1998), Aquifer systems in the Great Basin Region of Nevada, Utah, and adjacent states—Summary report, U. S. Geol. Surv. Prof. Pap., 1409-A.
  • Healy, R. W. (1990), Simulation of solute transport in variably-saturated porous media with supplemental information on modification of the U.S. Geological Survey's computer program VS2D, U.S. Geol. Surv. Water Resour. Invest. Rep., 90-4025.
  • Healy, R. W., and A. D. Ronan (1996), Documentation of the computer program VS2DH for simulation of energy transport in variably-saturated porous media—Modification of the U.S. Geological Survey's computer program VS2DT, U.S. Geol. Surv. Water Resour. Invest. Rep., 96-4230.
  • Kosugi, K., J. W. Hopmans, and J. H. Dane (2002), Parametric models, in Methods of Soil Analysis, part 4, Physical Methods, edited by J. H. Dane, and G. C. Topp, pp. 739757, Soil Sci. Soc. of Am., Madison, Wis.,
  • Lighthill, M. J., and G. B. Whitham (1955), On kinematic floods—Flood movements in long rivers, Proc. R. Soc. London, Ser. A, 220, 281316.
  • Maurer, D. K., and D. L. Berger (1997), Subsurface flow and water yield from watersheds tributary to Eagle Valley hydrographic area, west-central Nevada, U.S. Geol. Surv. Water Resour. Invest. Rep., 97-4191.
  • Mein, R. G., and C. L. Larson (1973), Modeling infiltration during a steady rain, Water Resour. Res., 9(2), 384394.
  • Mohrbacher, C. (1983), Stable isotopes and ground-water chemistry as indicators of mountain front recharge, Tucson Basin, Pima County, Arizona, in Hydrology and Water Resources in Arizona and the Southwest, Proceedings of the 1983 Meetings of the Arizona Section, edited by T. C. Rasmussen, and J. L. Mills, vol. 13, pp. 7784, Ariz. Sect., Am. Water Resour. Assoc., Tucson.
  • Niswonger, R. G., and D. E. Prudic (2003), Modeling heat as a tracer to estimated streambed seepage and hydraulic conductivity, in Heat as a Tool for Studying the Movement of Ground Water Near Streams, edited by D. A. Stonestrom, and J. Constantz, U.S. Geol. Surv. Circ., 1260, 8189.
  • Phillip, J. R. (1957), Theory of infiltration. 1. The infiltration equation and its solution, Soil Sci., 83, 345357.
  • Phillip, J. R. (1968), Absorption and infiltration in two and three dimensional systems, in Water in the Unsaturated Zone, Proceedings of the Wageningen Symposium, Wageningen, the Netherlands, 19–23 June 1966, vol. 1, edited by P. E. Rijtema, and H. Wassink, pp. 503523, U. N. Educ., Sci., and Cultural Organ., Paris.
  • Phillips, J. V., and T. L. Ingersoll (1998), Verification of roughness coefficients for selected natural and constructed stream channels in Arizona, U. S. Geol. Surv. Prof. Pap., 1584.
  • Prudic, D. E., R. G. Niswonger, J. L. Wood, and K. K. Henkelman (2003), Trout Creek—Estimating flow duration and seepage losses along an intermittent stream tributary to Humboldt River, Lander and Humboldt Counties, Nevada, in Heat as a Tool for Studying the Movement of Ground Water Near Streams, edited by D. A. Stonestrom, and J. Constantz, U.S. Geol. Surv. Circ., 1260, 5771.
  • Rachocki, A. H. (1981), Alluvial Fans, John Wiley, Hoboken, N. J.,
  • Ronan, A. D., D. E. Prudic, C. E. Thodal, and J. E. Constantz (1998), Field study of diurnal temperature effects of infiltration and variably-saturated flow beneath an ephemeral stream, Water Resour. Res., 34(9), 21372152.
  • Scanlon, B. R. (1991), Evaluation of moisture flux from chloride data in desert soils, J. Hydrol., 128, 137156.
  • Scanlon, B. R. (1992), Moisture and solute flux along preferred pathways characterized by fissured sediments in desert soils, J. Contam. Hydrol., 10, 1946.
  • Scanlon, B. R. (1994), Water and heat fluxes in desert soils: 1. Field studies, Water Resour. Res., 30(3), 709719.
  • Scanlon, B. R. (2000), Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone, Water Resour. Res., 36(2), 395409.
  • Stone, W. J. (1992), Paleohydrologic implications of some deep soilwater chloride profiles, Murray Basin, South Australia, J. Hydrol., 132, 201223.
  • Stonestrom, D. A., D. E. Prudic, R. J. Laczniak, and K. C. Akstin (2004), Tectonic, climatic, and land-use controls on groundwater recharge in an arid alluvial basin: Amargosa Desert, U.S.A. in Groundwater Recharge in a Desert Environment: The Southwestern United States, Water Sci. Appl. Ser., vol. 9, edited by J. F. Hogan, F. M. Phillips, and B. R. Scanlon, pp. 2947, AGU, Washington, D. C.,
  • Strelkoff, T. (1970), Numerical solution of Saint-Venant equations, J. Hydraul. Eng., 96, 223252.
  • Thornbury, W. D. (1969), Principles of Geomorphology, John Wiley, Hoboken, N. J.,
  • Walvoord, M. A., and F. M. Phillips (2004), Identifying areas of basin-floor recharge in the Trans-Pecos region and the link to vegetation, J. Hydrol., 292, 5974.
  • Willden, R. (1964), Geology and mineral deposits of Humboldt Count, Nevada: Reno, Nev. Bull. Nev. Bur. Mines Geol., 59.
  • Winograd, I. J., A. C. Riggs, and T. B. Coplen (1998), The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA, Hydrogeol. J., 6, 7793.