SEARCH

SEARCH BY CITATION

References

  • Asquith, W. H., and J. S. Famiglietti (2000), Precipitation areal reduction factor estimation using an annual-maxima centered approach, J. Hydrol., 230, 5569.
  • Austin, P. M., and R. A. House (1972), Analysis of the structure of precipitation patterns in New England, J. Appl. Meteorol., 11, 926935.
  • Bacchi, B., and R. Ranzi (1996), On the derivation of the areal reduction factor of storms, Atmos. Res., 42, 123135.
  • Bell, F. C. (1976), The areal reduction factors in rainfall frequency estimation, Rep. 35, Cent. for Ecol. and Hydrol., Wallingford, U. K.,
  • Castro, J., A. Câ rsteanu, and C. Flores (2004), Intensity–duration—area—frequency functions for precipitation in a multifractal framework, Physica A, 338, 206210.
  • Deidda, R. (2000), Rainfall downscaling in a space-time multifractal framework, Water Resour. Res., 36(7), 17791794.
  • De Michele, C., N. T. Kottegoda, and R. Rosso (2001), The derivation of areal reduction factor of storm rainfall from its scaling properties, Water Resour. Res., 37(12), 32473252.
  • Fraedrich, K., and C. Larnder (1993), Scaling regimes of composite rainfall time series, Tellus, Ser. A, 45, 289298.
  • Gupta, V. K., and E. Waymire (1990), Multiscaling properties of spatial rainfall and river flow distributions, J. Geophys. Res., 95(D3), 19992009.
  • Gupta, V. K., and E. Waymire (1993), A statistical analysis of mesoscale rainfall as a random cascade, J. Appl. Meteorol., 32(2), 251267.
  • Hershfield, D. M. (1962), Extreme rainfall relationships, J. Hydraul. Div. Am. Soc. Civ. Eng., HY6(11), 7379.
  • Hubert, P., H. Bendjoudi, D. Schertzer, and S. Lovejoy (1998), A multifractal explanation for rainfall intensity-duration-frequency curves, in Heavy Rains and Flash Floods, edited by C. Llasat, P. Versace, and E. Ferrari, pp. 2128, Natl. Res. Counc., Group for Prev. from Hydrol. Disasters, Cosenza, Italy.,
  • Kawamura, A., K. Jinno, R. Berndtsson, and T. Furukawa (1996), Parameterization of rain cell properties using an advection-diffusion model and rain gage data, Atmos. Res., 42, 6773.
  • Koutsoyiannis, D. (1997), Statistical Hydrology (in Greek), 4th ed., Dep. of Water Resour., Hydraul. and Maritime Eng., Natl. Tech. Univ. of Athens, Athens, Greece.,
  • Langousis, A. (2004), The areal reduction factor: A multifractal analysis, M.Sc. thesis, 117 pp., Dep. of Civ. and Environ. Eng., Mass. Inst. of Technol., Cambridge.,
  • Leclerc, G., and J. C. Schaake (1972), Derivation of hydrologic frequency curves, Rep. 142, 151 pp., Dep. of Civ. Eng., Mass. Inst. of Technol., Cambridge.,
  • Lovejoy, S., and D. Schertzer (1995), Multifractals and rain, in New Uncertainty Concepts in Hydrology and Hydrological Modeling, edited by A. W. Kundzewicz, pp. 62103, Cambridge Univ. Press, New York.,
  • Martin, D. W., and A. J. Schreiner (1981), Characteristics of West African and East Atlantic cloud clusters: A survey from GATE, Mon. Weather Rev., 109, 16711688.
  • Menabde, M., and M. Sivapalan (2000), Modeling of rainfall time series and extremes using bounded random cascades and Levy-stable distributions, Water Resour. Res., 36(11), 32933300.
  • Menabde, M., D. Harris, A. Seed, G. Austin, and D. Stow (1997), Multiscaling properties of rainfall and bounded random cascades, Water Resour. Res., 33(12), 28232830.
  • Natural Environmental Research Council (NERC) (1975), Flood Studies Report, Cent. for Ecol. and Hydrol., Wallingford, U. K.,
  • Olsson, J. (1995), Limits and characteristics of the multifractal behavior of a high-resolution rainfall time series, Nonlinear Process. Geophys., 2, 2329.
  • Olsson, J., J. Niemczynowicz, and R. Berndtsson (1993), Fractal analysis of high-resolution rainfall time series, J. Geophys. Res., 98(D12), 23,26523,274.
  • Omolayo, A. S. (1993), On the transposition of areal reduction factors for rainfall frequency estimation, J. Hydrol., 145, 191205.
  • Orlanski, I. (1975), A rational subdivision of scales for atmospheric processes, Bull. Am. Meteorol. Soc., 56(5), 527530.
  • Perica, S., and E. Foufoula-Georgiou (1996), Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions, J. Geophys. Res., 101(D21), 26,34726,361.
  • Roche, M. (1966), Hydrologie de Surface, Elsevier, New York.,
  • Rodriguez-Iturbe, I., and J. M. Mejia (1974), On the transformation of point rainfall to areal rainfall, Water Resour. Res., 10(4), 729735.
  • Schertzer, D., and S. Lovejoy (1987), Physical modeling and analysis of rain and clouds by anisotropic scaling of multiplicative processes, J. Geophys. Res., 92(D8), 96939714.
  • Singh, V. P. (1992), Elementary Hydrology, Prentice-Hall, Upper Saddle River, N. J.,
  • Sivapalan, M., and G. Blöschl (1998), Transformation of point rainfall: Intensity-duration-frequency curves, J. Hydrol., 204, 150167.
  • Veneziano, D. (1999), Basic properties and characterization of stochastically self-similar processes in RD, Fractals, 7(1), 5978.
  • Veneziano, D., and P. Furcolo (2002a), Multifractality of rainfall and intensity-duration-frequency curves, Water Resour. Res., 38(12), 1306, doi:10.1029/2001WR000372.
  • Veneziano, D., and P. Furcolo (2002b), Scaling of multifractal measures under affine transformations, Fractals, 10(2), 147156.
  • Veneziano, D., P. Furcolo, and V. Iacobellis (2005), Imperfect scaling of time and space-time rainfall, J. Hydrol., in press.
  • Venugopal, V., E. Foufoula-Georgiou, and V. Sapozhnikov (1999), Evidence of dynamic scaling in space-time rainfall, J. Geophys. Res., 104(D24), 31,59931,610.
  • Viessman, W., and G. Lewis (2003), Introduction to Hydrology, HarperCollins, New York.,
  • Willems, P. (2000), Compound intensity/duration/frequency-relationships of extreme precipitation for two seasons and two storm types, J. Hydrol., 233, 189205.