SEARCH

SEARCH BY CITATION

References

  • Cassiani, G., and Z. J. Kabala (1998), Hydraulics of a partially penetrating well: Solution to a mixed-type boundary value problem via dual integral equations, J. Hydrol., 211, 100111.
  • Charbeneau, R. J. (2000), Groundwater Hydraulic and Pollutant Transport, Prentice-Hall, Upper Saddle River, N. J.
  • Crump, K. S. (1976), Numerical inversion of Laplace transforms using a Fourier series approximation, J. Assoc. Comput. Mach., 23(1), 8996.
  • de Hoog, F. R., J. H. Knight, and A. N. Stokes (1982), An improved method for numerical inversion of Laplace transforms, SIAM J. Sci. Stat. Comput., 3(3), 357366.
  • Hantush, M. S. (1962), Aquifer tests on partially penetrating wells, Trans. Am. Soc. Civil Eng., 127, 284308.
  • Hantush, M. S. (1964), Hydraulics of wells, Adv. Hydrosci., 1, 281432.
  • Hildebrand, F. B. (1976), Advanced Calculus for Applications, 2nd ed., Prentice-Hall, Upper Saddle River, N. J.
  • Kreyszig, E. (1993), Advanced Engineering Mathematics, 7th Ed., John Wiley, Hoboken, N. J.
  • Neuman, S. P. (1974), Effect of partial penetration on flow in unconfined aquifers considering delayed gravity response, Water Resour. Res., 10(2), 303312.
  • Ruud, N. C., and Z. J. Kabala (1997), Response of a partially penetrating well in a heterogeneous aquifer: Integrated well face flux vs. uniform well face flux boundary conditions, J. Hydrol., 194, 7694.
  • Shanks, D. (1955), Non-linear transformations of divergent and slowly convergent sequences, J. Math. Phys., 34, 142.
  • Stehfest, H. (1970), Numerical inversion of Laplace transforms, Commun. ACM, 13(1), 4749.
  • Sternberg, Y. M. (1973), Efficiency of partially penetrating wells, Ground Water, 11(3), 58.
  • Strelsova-Adams, T. D. (1979), Pressure drawdown in a well with limited flow entry, J. Pet. Technol., 31, 14691476.
  • Talbot, A. (1979), The accurate numerical inversion of Laplace transforms, J. Inst. Math. Its Appl., 23, 97120.
  • Theis, C. V. (1935), The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage, Eos Trans. AGU, 16, 519524.
  • Visual Numerics (1997), IMSL Stat/Library, volume 2, software, Houston, Tex.
  • Yeh, H. D., S. Y. Yang, and H. Y. Peng (2003), A new closed-form solution for a radial two-layer drawdown equation for groundwater under constant flux pumping in a finite-radius well, Adv. Water Resour., 26(7), 747757.