SEARCH

SEARCH BY CITATION

References

  • Barry, D. A., S. J. Barry, and J.-Y. Parlange (1996), Capillarity correction to periodic solutions of the shallow flow approximation, in Mixing in Estuaries and Coastal Seas, Coastal Estuarine Stud., vol. 5, edited by C. Pattiaratchi, pp. 496510, AGU, Washington, D. C.
  • Beven, K. J. (1993), Prophecy, reality and uncertainty in distributed hydrological modeling, Adv. Water Resour., 16, 4151.
  • Beven, K. J., and A. Binley (1992), The future of distributed models: Model calibration and uncertainty prediction, Hydrol. Processes, 6, 279298.
  • Boelter, D. H. (1965), Hydraulic conductivity of peats, Soil Sci., 100(4), 227231.
  • Boussinesq, J. (1877), Essai sur la Théorie des Eaux Courantes, 180 pp., Imprimerie Natl., Paris.
  • Brazier, R. E., K. J. Bevin, J. Freer, and J. S. Rowan (2000), Equifinality and uncertainty in physically based soil erosion models: Application of the GLUE methodology to WEPP—The Water Erosion Prediction Project—for sites in the UK and USA, Earth Surf. Processes Landforms, 25, 825845.
  • Carslaw, H. S., and J. C. Jaeger (1959), Conduction of Heat in Solids, 2nd ed., 510 pp., Oxford Univ. Press, New York.
  • Dumm, L. D. (1954), Drain-spacing formula, Agric. Eng., 726730.
  • Freer, J., and K. Beven (1996), Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach, Water Resour. Res., 31, 21612173.
  • Gardner, R. G. (1975), Runoff from an intertidal mash during tidal exposure—Recession curves and chemical characteristics, Limnol. Oceanogr., 20, 8189.
  • Harvey, J. W., P. F. Germann, and W. E. Odum (1987), Geomorphological control of subsurface hydrology in the creek bank zone of tidal marshes, Estuarine Coastal Shelf Sci., 25, 677691.
  • Heinle, D. R., and D. A. Flemer (1976), Flows of materials between poorly flooded tidal marshes and an estuary, Mar. Biol., 35, 359373.
  • Hemond, H. F., and J. L. Fifield (1982), Subsurface flow in salt marsh peat: A model and field study, Limnol. Oceanogr., 27(1), 126136.
  • Hemond, H. F., W. K. Nuttle, R. W. Burke, and K. D. Stolzenbach (1984), Surface infiltration in salt marshes: Theory, measurement, and biogeochemical implications, Water Resour. Res., 20, 591600.
  • Hooghoudt, S. B. (1940), Algemeene beshouwing van het probleem van de detailontwatering en de infiltratie door middel van parallel loopende drains, greppels, slooten, en kanalen, Versl. Landbouwk. Onderz., vol. 46(14)B, 193 pp., Algemeene Landsdrukkerij, 's-Gravenhage, Netherlands.
  • Hughes, C. E., P. Binning, and G. R. Willgoose (1998), Characterization of the hydrology of an estuarine wetlands, J. Hydrol., 211, 3449.
  • Jeng, D. S., X. Mao, P. Enot, D. A. Barry, and L. Li (2005), Spring-neap tide-induced beach water table fluctuations in a sloping coastal aquifer, Water Resour. Res., 41, W07026, doi:10.1029/2005WR003945.
  • Jordan, T. E., and D. L. Correll (1985), Nutrient chemistry and hydrology of interstitial water in brackish tidal marshes of Chesapeake Bay, Estuarine Coastal Shelf Sci., 21, 4555.
  • Knight, J. H. (1981), Steady periodic flow through a rectangular dam, Water Resour. Res., 17, 12221224.
  • Kraijenhoff van de Leur, D. A. (1958), A study of non-steady groundwater flow with special references to a reservoir-coefficient, Ingenieur, 40, 8794.
  • Li, H., and J. J. Jiao (2003), Influence of the tide on the mean watertable in an unconfined, anisotropic, inhomogeneous coastal aquifer, Adv. Water Resour., 26, 916.
  • Li, H., J. J. Jiao, M. Luk, and K. Cheung (2002), Tide-induced groundwater level fluctuation in coastal aquifers bounded by L-shaped coast lines, Water Resour. Res., 38(3), 1024, doi:10.1029/2001WR000556.
  • Li, H., L. Li, and D. Lockington (2005), Aeration for plant root respiration in a tidal marsh, Water Resour. Res., 41, W06023, doi:10.1029/2004WR003759.
  • Li, L., D. A. Barry, F. Stagnitti, and J.-Y. Parlange (2000a), Groundwater waves in a coastal aquifer: A new governing equation including vertical effects and capillarity, Water Resour. Res., 36, 411420.
  • Li, L., D. A. Barry, C. Cunningham, F. Stagnitti, and J.-Y. Parlange (2000b), A two-dimensional analytical solution of groundwater responses to tidal loading in an estuary and ocean, Adv. Water Resour., 23, 825833.
  • Luther, G. W.III, A. L. Meyerson, K. Rogers, and F. Hall (1982), Tidal and seasonal variations of sulfate ion in a New Jersey marsh system, Estuaries, 5, 189196.
  • Marani, M., N. Ursino, and S. Silvestri (2005), Reply to comment by Alicia M. Wilson and Leonard Robert Gardner on “Subsurface flow and vegetation patterns in tidal environments,”, Water Resour. Res., 41, W07022, doi:10.1029/2004WR003722.
  • Middleton, B. (1999), Wetland Restoration: Flood Pulsing and Disturbance Dynamics, 388 pp., John Wiley, Hoboken, N. J.
  • Mitsch, W. J., and J. G. Gosselink (2000), Wetlands, 3rd ed., 920 pp., Van Nostrand Reinhold, Hoboken, N. J.
  • Montalto, F. A., and T. S. Steenhuis (2004), The link between hydrology and restoration of tidal marshes in the NY/NJ estuary, Wetlands, 24(2), 414425.
  • Montalto, F. A., T. S. Steenhuis, and J.-Y. Parlange (2006), The hydrology of Piermont Marsh, a reference for tidal marsh restoration in the NY Estuary, J. Hydrol., 316(1–4), 108128.
  • Niedowski, N. L. (2000), New York State salt marsh restoration and monitoring guidelines, report, 123 pp., N. Y. State Dep. of Environ. Conserv., Albany.
  • Nielsen, P. (1990), Tidal dynamics of the water table in beaches, Water Resour. Res., 26, 21272134.
  • Nuttle, W. K. (1988), The extent of lateral water movement in the sediments of a New England salt marsh, Water Resour. Res., 24, 20772085.
  • Nuttle, W. K., and H. F. Hemond (1988), Salt marsh hydrology: Implications for biogeochemical fluxes to the atmosphere and to estuaries, Global Biogeochem. Cycles, 2(2), 91114.
  • Parlange, J.-Y., F. Stagnitti, J. L. Starr, and R. D. Braddock (1984), Free-surface flow in porous media and periodic solution of the shallow flow approximation, J. Hydrol., 70, 251263.
  • Price, J. S., and S. M. Schlotzhauer (1999), Importance of shrinkage and compression in determining water storage changes in peat: The case of a mined peatland, Hydrol. Processes, 13, 25912601.
  • Reeves, H. W., P. M. Thibodeau, R. G. Underwood, and L. R. Gardner (2000), Incorporation of total stress changes into the ground water model SUTRA, Ground Water, 38(1), 8998.
  • Ritzema, H. P. (Ed.) (1994), Drainage Principles and Applications, ILRI Publ., vol. 16, 2nd ed., 1125 pp., Int. Inst. for Land Reclam. and Impr., Wageningen, Netherlands.
  • Shisler, J. K. (1990), Creation and restoration of coastal wetlands of the northeastern United States, in Wetland Creation and Restoration: The Status of the Science, edited by J. A. Kusler, and M. E. Kentula, pp. 143170, Island Press, Washington, D. C.
  • Skags, R. W., G. M. Chescheir, and B. D. Phillips (2005), Methods to determine lateral effect of a drainage ditch on wetland hydrology, Trans. ASAE, 48(2), 577584.
  • Silvestri, S., and M. Marani (2004), Salt-marsh vegetation and morphology: Basic physiology, modeling, and remote sensing observations, in The Ecogeomorphology of Tidal Marshes, Coastal Estuarine Stud., vol. 59, edited by S. Fagherazzi, L. Blum, and M. Marani, pp. 525, AGU, Washington, D. C.
  • Silvestri, S., A. Defina, and M. Marani (2005), Tidal regime, salinity, and salt marsh plant zonation, Estuarine Coastal Shelf Sci., 62, 119130.
  • Steggewentz, J. H. (1933), De invloed van de getijbeweging van zeeën en getijrivieren op de stijghoogte van het grondwater, Ph.D. thesis, Delft Univ. of Technol., Delft, Netherlands.
  • Sun, H. (1997), A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour. Res., 33, 14291435.
  • Thompson, J. R., H. R. Sorenson, H. Gavin, and A. Refsgaard (2004), Application of the coupled MIKE SHE/MIKE 11 modeling system to a lowland wet grassland in southeast England, J. Hydrol., 293, 151179.
  • Todd, D. K. (1980), Groundwater Hydrology, 2nd ed., 535 pp., John Wiley, Hoboken, N. J.
  • Twilley, R. R., and R. H. Chen (1998), A water budget and hydrology model of a basin mangrove forest in Rookery Bay, Florida, Mar. Freshwater Res., 49(4), 309323.
  • Ursino, N., S. Silvestri, and M. Marani (2004), Subsurface flow and vegetation patterns in tidal environments, Water Resour. Res., 40, W05115, doi:10.1029/2003WR002702.
  • Valiela, I., J. M. Teal, S. Volkmann, D. Shafer, and E. J. Carpenter (1978), Nutrient and particulate fluxes in a salt marsh ecosystem: Tidal exchanges and inputs by precipitation and groundwater, Limnol. Oceanogr., 23, 798812.
  • Wilson, A. M., and L. R. Gardner (2005), Comment on “Subsurface flow and vegetation patterns in tidal environments” by Nadia Ursino, Sonia Silvestri, and Marco Marani, Water Resour. Res., 41, W07021, doi:10.1029/2004WR003554.
  • Wong, J. K., and D. Peteet (1999), Environmental history of Piermont Marsh, Hudson River, NY, Section III, in Final Reports of the Tibor T. Polgar Fellowship Program, 1998. edited by W. C. Nieder, and J. R. Waldman, pp. 130, Hudson River Found., New York.
  • Yelverton, F. G., and C. T. Hackney (1986), Flux of dissolved organic carbon and pore water through the substrate of a Spartina alterniflora marsh in North Carolina, Estuarine Coastal Shelf Sci., 22, 255267.
  • Youngs, E. G. (1965), Horizontal seepage through unconfined aquifers with hydraulic conductivity varying with depth, J. Hydrol., 3, 283296.
  • Youngs, E. G., P. B. Leeds-Harrison, and J. M. Chapman (1989), Modeling water-table movement in flat low-lying lands, Hydrol. Processes, 3, 301315.
  • Zedler, J. B. (2001), Handbook for Restoring Tidal Wetlands, 439 pp., CRC Press, Boca Raton, Fla.