SEARCH

SEARCH BY CITATION

References

  • Andersson, A. J. (2003), Climate change and anthropogenic effects on shallow-water carbonate biogeochemistry, M.S. thesis, 195 pp., Univ. of Hawaii at Manoa, Honolulu.
  • Andersson, A. J., and F. T. Mackenzie (2004), The shallow-water ocean: A source or sink of atmospheric CO2? Frontiers Ecol. Environ., 2, 348353.
  • Andersson, A. J., F. T. Mackenzie, and L. M. Ver (2003), Solution of shallow-water carbonates: An insignificant buffer against rising atmospheric CO2, Geology, 31, 513516.
  • Andersson, A. J., F. T. Mackenzie, and A. Lerman (2005), Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene, Am. J. Sci, 305, 875918.
  • Archer, D., H. Kheshgi, and E. Maier-Reimer (1998), Dynamics of fossil fuel CO2 neutralization by marine CaCO3, Global Biogeochem. Cycles, 12, 259276.
  • Bacastow, R. D., and C. D. Keeling (1973), Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: II. Changes from A.D. 1700 to 2070 as deduced from a geochemical model, in Carbon and the Biosphere, edited by G. M. Woodwell, and E. V. Pecan, pp. 86135, U.S. Atom. Energy Comm., Washington, D. C.
  • Balzer, W., and G. Wefer (1981), Dissolution of carbonate minerals in a subtropical shallow marine environment, Mar. Chem., 10, 545558.
  • Barnes, D. J., and C. Cuff (2000), Solution of reef rock buffers seawater against rising atmospheric CO2, in Proceedings of the Ninth International Coral Reef Symposium Abstracts, edited by D. Hopley et al., p. 248, State Minist. for the Environ., Jakarta, Indonesia.
  • Barnola, J. M., M. Anklin, J. Procheron, D. Reynaud, D. Schwander, and B. Stauffer (1995), CO2 evolution during the last millenium as recorded by Antarctic and Greenland ice, Tellus, Ser. B, 47, 264272.
  • Bates, N. R. (2001), Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre, Deep Sea Res., Part II, 48, 15071528.
  • Bates, N. R., A. F. Michaels, and A. H. Knap (1996), Seasonal and interannual variability of the oceanic carbon dioxide system at the U.S. JGOFS Bermuda Atlantic Time-series site, Deep Sea Res., Part II, 43, 347383.
  • Berner, R. A., J. T. Westrich, R. Graber, J. Smith, and C. S. Martens (1978), Inhibition of aragonite precipitation from supersaturated seawater: A laboratory and field study, Am. J. Sci., 278, 816837.
  • Bessat, F., and A. D. Buiges (2001), Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): A response of ocean-atmosphere variability from south central Pacific, Paleogeogr. Paleoclimatol. Paleoecol., 175, 381392.
  • Bijma, J., H. J. Spero, and D. W. Lea (1999), Reassessing foraminiferal stable isotope geochemistry: Impacts of the oceanic carbonate system (experimental results), in Use of Proxies in Paleoceanography: Example from the South Atlantic, edited by G. Fisher, and G. Wefer, pp. 489512, Springer, New York.
  • Bischoff, W. D., F. T. Mackenzie, and F. C. Bishop (1987), Stabilities of synthetic magnesian calcites in aqueous solution: Comparison with biogenic materials, Geochim. Cosmochim. Acta, 51, 14131423.
  • Bischoff, W. D., M. A. Bertram, F. T. Mackenzie and F. C. Bishop (1993), Diagenetic stabilization pathways of magnesian calcites, Carbon. Evap., 8, 8289.
  • Borges, A. (2005), Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean, Estuaries, 26(1), 327.
  • Borowitzka, M. A. (1981), Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A. foliacea, Mar. Biol., 62, 1723.
  • Buddemeier, R. W., J. A. Kleypas, and R. B. Aronson (2004), Coral reefs and global climate change: Potential contributions of climate change to stresses on coral reef ecosystems, report, 44 pp., Pew Cent. on Global Clim. Change, Arlington, Va.
  • Caldeira, K., and M. E. Wickett (2003), Anthropogenic carbon and ocean pH, Nature, 425, 365.
  • Chavez, F. P., and J. R. Toggweiler (1995), Physical estimates of global new production: The upwelling contribution, in Upwelling in the Ocean: Modern Processes and Ancient Records, edited by C. P. Summerhayes et al., pp. 313320, John Wiley, Hoboken, N. J.
  • Chen, C.-T. A., M. R. Rodman, C.-L. Wei, E. J. Olson, R. A. Feely, and J. F. Gendron (1986), Carbonate chemistry of the North Pacific Ocean, report, U.S. Dep. of Energy, Washington, D. C.
  • Dickson, A., and F. J. Millero (1987), A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep Sea Res., 38, 17331743.
  • Enting, I. G., T. M. L. Wigley, and M. Heimann (1995), Intergovernmental Panel on Climate Change (IPCC), Working Group 1, 1994: Modelling results relating future atmospheric CO2 concentrations to industrial emissions, ORNL/CDIAC DB1009, Carbon Dioxide Inf. Anal. Cent., U.S. Dep. of Energy, Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J. M. Barnola, and V. I. Morgan (1996), Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res., 101, 41154128.
  • Feely, R. A., C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and F. J. Millero (2004), Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science, 305, 362366.
  • Ferrier-Pagès, C., J.-P. Gattuso, S. Dallot, and J. Jaubert (2000), Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata, Coral Reefs, 19, 103113.
  • Frankignoulle, M., C. Canon, and J.-P. Gattuso (1994), Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO2, Limnol. Oceanogr., 39, 458462.
  • Friedli, H., H. Lotscher, H. Oeschger, U. Siegenthaler, and B. Stauffer (1986), Ice core record of the 13C/12C ratio of atmospheric carbon dioxide in the past two centuries, Nature, 324, 237238.
  • Gao, K., Y. Aruga, K. Asada, T. Ishihara, T. Akano, and M. Kiyohara (1993), Calcification in the articulated coralline alga Coralline pilulifera, with special reference to the effect of elevated CO2 concentration, Mar. Biol., 117, 129132.
  • Garrels, R., and R. Wollast (1978), Equilibrium criteria for two-component solids reacting with fixed composition in an aqueous phase—Example: The magnesian calcite, discussion, Am. J. Sci., 278, 14691474.
  • Gattuso, J.-P., M. Frankignoulle, I. Bourge, S. Romaine, and R. W. Buddemeier (1998), Effect of calcium carbonate saturation of seawater on coral calcification, Global Planet. Change, 18, 3746.
  • Gattuso, J.-P., P. D. Allemand, and M. Frankignoulle (1999), Interactions between the carbon and carbonate cycles at organism and community levels on coral reefs: A review of processes and control by carbonate chemistry, Am. Zool., 39, 160188.
  • Halley, R. B., and K. K. Yates (2000), Will reef sediments buffer corals from increased global CO2, in Proceedings of the Ninth International Coral Reef Symposium Abstracts, edited by D. Hopley et al., p. 248, State Minist. for the Environ., Jakarta, Indonesia.
  • Intergovernmental Panel on Climate Change (1996), Climate Change 1995: The Science Of Climate Change—Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., 572 pp., Cambridge Univ. Press, New York.
  • Intergovernmental Panel on Climate Change (2001), Climate Change 2001: The Scientific Basis—Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., 881 pp., Cambridge Univ. Press, New York.
  • Keeling, C. D., and T. P. Whorf (2002), Atmospheric CO2 records from sites in the SIO air sampling network, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., U.S. Dep. of Energy, Oak Ridge, Tenn.
  • Keeling, C. D., J. F. S. Chin, and T. P. Whorf (1996), Increased activity of northern vegetation inferred from atmospheric CO2 measurements, Nature, 382, 146149.
  • Kleypas, J. A., R. W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon, and B. N. Opdyke (1999), Geochemical consequences of increased atmospheric carbon dioxide on coral reefs, Science, 284, 118120.
  • Kleypas, J. A., R. W. Buddemeier, and J.-P. Gattuso (2001), The future of coral reefs in an age of global change, Int. J. Earth Sci., 90, 426437.
  • Kvenvolden, K. A. (1988), Methane—A major reservoir of carbon on a shallow geosphere? Chem. Geol., 71, 4151.
  • Langdon, C. (2002), Review of experimental evidence for effects of CO2 on calcification of reef builders, in Proceedings of the 9th International Coral Reef Symposium, vol. 2, edited by M. K. Kasim Moosa et al., pp. 10911098, Minist. of Environ., Jakarta, Indonesia.
  • Langdon, C., T. Takahashi, C. Sweeney, D. Chipman, J. Goddard, F. Marubini, H. Aceves, H. Barnett, and M. Atkinson (2000), Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef, Global Biogeochem. Cycles, 14, 639654.
  • Langdon, C., W. S. Broecker, D. E. Hammond, E. Glenn, K. Fitzsimmons, S. G. Nelson, T. H. Peng, I. Hajdas, and G. Bonani (2003), Effect of elevated CO2 on the community metabolism of an experimental coral reef, Global Biogeochem. Cycles, 17(1), 1011, doi:10.1029/2002GB001941.
  • Leclercq, N., J.-P. Gattuso, and J. Jaubert (2000), CO2 partial pressure controls the calcification rate of a coral community, Global Change Biol., 6, 329334.
  • Leclercq, N., J.-P. Gattuso, and J. Jaubert (2002), Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure, Limnol. Oceanogr., 47, 558564.
  • Lerman, A., and F. T. Mackenzie (2005), CO2 air-sea exchange due to calcium carbonate and organic matter storage, and its implications for the global carbon cycle, Aquat. Geochem., 11, 345390.
  • Lerman, A., F. T. Mackenzie, and L. M. Ver (2004), Coupling of the perturbed C-N-P cycles in industrial time, Aquat. Geochem., 10, 332.
  • Lewis, E., and D. W. R. Wallace (1998), Program developed for CO2 system calculations, ORNL/CDIAC-105, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., U.S. Dep. of Energy, Oak Ridge, Tenn.
  • Lough, J. M., and D. J. Barnes (2000), Environmental control on the massive coral Porites, J. Exper. Mar. Biol. Ecol., 245, 225243.
  • Mackenzie, F. T., and C. R. Agegian (1989), Biomineralization and tentative links to plate tectonics, in Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals, edited by R. E. Crick, pp. 1127, Springer, New York.
  • Mackenzie, F. T., A. Lerman, and L. M. Ver (1998), Role of the continental margin in the global carbon balance during the past three centuries, Geology, 26, 423426.
  • Mackenzie, F. T., A. Lerman, and L. M. Ver (2001), Recent past and future of the global carbon cycle, in Geological Perspectives of Global Climate Change, edited by L. C. Gerhard, W. E. Harrison, and B. M. Hanson, pp. 5182, special publication, Am. Assoc. of Petrol. Geol., Tulsa, Okla.
  • Mackenzie, F. T., L. M. Ver, and A. Lerman (2002), Century-scale nitrogen and phosphorus controls of the carbon cycle, Chem. Geol., 190, 1332.
  • Mackenzie, F. T., A. J. Andersson, A. Lerman, and L. M. Ver (2004), Boundary exchanges in the global coastal margin: Implications for the organic and inorganic carbon cycles, in The Sea, vol. 13, edited by A. R. Robinson, J. McCarthy, and B. J. Rothschild, pp. 193225, Harvard Univ. Press, Cambridge, Mass.
  • Marubini, F., and M. J. Atkinson (1999), Effects of lowered pH and elevated nitrate on coral calcification, Mar. Ecol. Prog. Ser., 188, 117121.
  • Marubini, F., and B. Thake (1999), Bicarbonate addition promotes coral growth, Limnol. Oceanogr., 44, 716720.
  • Marubini, F., H. Barnett, C. Langdon, and M. J. Atkinson (2001), Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa, Mar. Ecol. Prog. Ser., 220, 153162.
  • Marubini, F., C. Ferrier-Pagés, and J.-P. Cuif (2003), Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: A cross-family comparison, Proc. R. Soc. London, Ser. B, 270, 179184.
  • McNeil, B. I., R. J. Matear, and D. J. Barnes (2004), Coral reef calcification and climate change: The effect of ocean warming, Geophys. Res. Lett., 31, L22309, doi:10.1029/2004GL021541.
  • Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz (1973), Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897907.
  • Meybeck, M. (1982), Carbon, nitrogen, and phosphorus transport by world rivers, Am. J. Sci., 282, 401450.
  • Meybeck, M., and A. Ragu (1995), Water quality of world river basins, report, 40 pp., Collab. Cent. for Fresh Water Qual. Monit. and Assess., U. N. Environ. Programme, Nairobi, Kenya.
  • Milliman, J. D. (1974), Recent Sedimentary Carbonates: Part 1—Marine Carbonates, 375 pp., Springer, New York.
  • Milliman, J. D. (1993), Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state, Global Biogeochem. Cycles, 7, 927957.
  • Milliman, J. D., and A. W. Droxler (1996), Neritic and pelagic carbonate sedimentation in the marine environment: Ignorance is not bliss, Geol. Rundsch., 85, 496504.
  • Morse, J. W. (1983), The kinetics of calcium carbonate dissolution and precipitation, in Reviews in Mineralogy, Carbonates: Mineralogy and Chemistry, edited by R. J. Reeder, pp. 227264, Mineral. Soc. of Am., Washington, D. C.
  • Morse, J. W., and F. T. Mackenzie (1990), Geochemistry of Sedimentary Carbonates, 707 pp., Elsevier, New York.
  • Moulin, E., A. Jordens, and R. Wollast (1985), Influence of the aerobic bacterial respiration on the early dissolution of carbonates in coastal sediments, paper presented at Progress in Belgium Oceanographic Research, Natl. Comm. of Oceanol., R. Acad. of Belgium, Brussels.
  • Neftel, A., E. Moor, H. Oeschger, K. K. Turekian, and R. E. Dodge (1985), Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries, Nature, 315, 4547.
  • Orr, J. C., et al. (2005), Anthropogenic ocean acidification over the twenty-first century and its impacts on calcifying organisms, Nature, 437, 681686.
  • Paasche, E., and S. Brubak (1994), Enhanced calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) under phosphorus limitation, Phycologia, 33, 324330.
  • Revelle, R., and W. Munk (1977), The carbon dioxide cycle and the biosphere, in Energy and Climate, edited by N. G. S. Committee, pp. 140158, Natl. Acad. Press, Washington, D. C.
  • Reynaud, S., N. Leclercq, S. Romaine-Lioud, C. Ferrier-Pagés, J. Jaubert, and J.-P. Gattuso (2003), Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral, Global Change Biol., 9, 16601668, doi:10.1046/j.1529-8817.2003.00678.x.
  • Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe, and F. M. M. Morel (2000), Reduced calcification of marine plankton in response to increased atmospheric CO2, Nature, 407, 364367.
  • Sabine, C. L., et al. (2004), The oceanic sink for anthropogenic CO2, Science, 305, 367371.
  • Sandberg, P. A. (1983), An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy, Nature, 305, 1922.
  • Sandberg, P. A. (1985), Nonskeletal aragonite and pCO2 in the Phanerozoic and Proterozoic, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist, and W. S. Broecker, pp. 585594, AGU, Washington, D. C.
  • Sarmiento, J. L., and N. Gruber (2002), Sinks for anthropogenic carbon, Phys. Today, 55, 3036.
  • Sarmiento, J. L., and E. T. Sundquist (1992), Revised budget for the oceanic uptake of anthropogenic carbon dioxide, Nature, 356, 589593.
  • Sciandra, A., J. Harlay, D. Lefèvre, R. Lemée, P. Rimmelin, M. Denis, and J.-P. Gattuso (2003), Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation, Mar. Ecol. Prog. Ser., 261, 111122.
  • Smith, A. D., and A. A. Roth (1979), Effect of carbon dioxide concentration on calcification in the red coralline alga Bossiella orbigniana, Mar. Biol., 52, 217225.
  • Smith, S. V. (1985), Physical, chemical and biological characteristics of CO2 gas flux across the air-water interface, Plant Cell Environ., 8, 387398.
  • Spero, H. J., J. Bijma, D. W. Lea, and B. E. Bemis (1997), Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature, 390, 497500.
  • Sundquist, E. T. (1985), Geological perspectives on carbon dioxide and the carbon cycle, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist, and W. S. Broecker, pp. 559, AGU, Washington D. C.
  • Takahashi, T., W. S. Broecker, A. E. Brainbridge, and R. F. Weiss (1980), Carbonate chemistry of the Atlantic, Pacific and Indian Oceans: The results of the GEOSECS expeditions, 1972–1978, Tech. Rep. 1, Lamont-Doherty Geol. Obs., Palisades, N. Y.
  • Ver, L. M., F. T. Mackenzie, and A. Lerman (1999a), Biogeochemical responses of the carbon cycle to natural and human perturbations: Past, present, and future, Am. J. Sci., 299, 762801.
  • Ver, L. M., F. T. Mackenzie, and A. Lerman (1999b), Carbon cycle in the coastal zone: Effects of global perturbations and change in the past three centuries, Chem. Geol., 159, 283304.
  • Winn, C. D., Y.-H. Li, F. T. Mackenzie, and D. M. Karl (1998), Rising surface ocean dissolved inorganic carbon at the Hawaii Ocean Time-series site, Mar. Chem., 60, 3347.
  • Wollast, R. (1994), The relative importance of bioremineralization and dissolution of CaCO3 in the global carbon cycle, in Past and Present Biomineralization Processes: Considerations About the Carbonate Cycle, Bull. Inst. Oceanogr., vol. 13, edited by F. Doumenge, D. Allemand, and A. Toulemont, pp. 1334, Musée Océanogr., Monaco.
  • Zondervan, I., R. E. Zeebe, B. Rost, and U. Riebesell (2001), Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2, Global Biogeochem. Cycles, 15, 507516.