SEARCH

SEARCH BY CITATION

References

  • Amiotte-Suchet, P. (1994), Cycle du carbone, érosion chimique des continents et transferts vers les océans, thèse de doctorat, 182 pp., U.F.R. des Sci. de la vie et de la terre, Inst. de Géol., Univ. Louis Pasteur, Strasbourg, France.
  • Amiotte-Suchet, P., J.-L. Probst, and W. Ludwig (2003), Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans, Global Biogeochem. Cycles, 17(2), 1038, doi:10.1029/2002GB001891.
  • Berner, E. K., and R. A. Berner (1996), Global Environment: Water, Air, and Geochemical Cycles, 376 pp., Prentice-Hall, Upper Saddle River, N. J.
  • Berner, R. A., A. C. Lasaga, and R. M. Garrels (1983), The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641683.
  • Birot, P. (1970), Les Régions Naturelles du Globe, 380 pp., Masson et Cie, Editeurs, Paris.
  • Blatt, H., and R. L. Jones (1975), Proportions of exposed igneous, metamorphic, and sedimentary rocks, Geol. Soc. Am. Bull., 86, 10851088.
  • Bluth, G. J. S., and L. R. Kump (1991), Phanerozoic paleogeology, Am. J. Sci., 291, 284308.
  • Bluth, G. J. S., and L. R. Kump (1994), Lithologic and climatologic controls of river chemistry, Geochim. Cosmochim. Acta, 58, 23412359.
  • Buddemeier, R. W. (Ed.) (1996), Groundwater Discharge in the Coastal Zone: Proceedings of an International Symposium, Rep. Stud. 8, 179 pp., Land-Ocean Interact. in the Coastal Zone, Texel, Netherlands.
  • Burnett, W. C., H. Bokuniewicz, M. Huettel, W. S. Moore, and M. Taniguchi (2003), Groundwater and porewater inputs to the coastal zone, Biogeochemistry, 66, 333.
  • Caraco, N. F. (1995), Influence of human population on P transfers to aquatic systems: A regional case study using large rivers, in Phosphorus in the Global Environment, edited by H. Thiessen, pp. 235247, John Wiley, Hoboken, N. J.
  • Caraco, N. F., and J. J. Cole (1999), Human impact on nitrate export: An analysis using major world rivers, Ambio, 28(2), 167170.
  • Catt, J. A. (1988), Loess, its formation, transport and economic significance, in Physical and Chemical Weathering in Geochemical Cycles, edited by A. Lerman, and M. Meybeck, pp. 113142, Springer, New York.
  • Chesner, C. A., W. I. Rose, A. Deino, R. Drake, and J. A. Westgate (1991), Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified, Geology, 19(3), 200203.
  • Choubert, G., A. Faure-Muret, P. Chanteux, G. Luettig, and A. I. Zhamoida (1980), Atlas Géologique du Monde, 1:10,000,000, Comm. de la Carte Géol. du Monde, U.N. Educ., Sci., and Cult. Org., Paris.
  • Cleaves, E. T., D. W. Fisher, and O. P. Bricker (1974), Chemical weathering of serpentinite in the eastern piedmont of Maryland, Geol. Soc. Am. Bull., 85, 437444.
  • Conley, D. J. (2002), Terrestrial ecosystems and the global biogeochemical silica cycle, Global Biogeochem. Cycles, 16(4), 1121, doi:10.1029/2002GB001894.
  • Crutzen, P. J., and E. F. Stoermer (2000), The “Anthropocene,”, IGBP Newsl., 41, 1718.
  • Datong, L., H. Handuo, H. Pingyi, Z. Junfen, C. Jin, T. Songcheng, L. Yan, and Z. Xilin (1985), Map of soluble rock types in China, 1st ed., 1:4,000,000, edited by Institute of Karst Geology, Geol. Cartogr. Print. House, Beijing.
  • Dottin, O. (1990), Geological Map of the World, 1:25,000,000, Comm. for the Geol. Map of the World (CGMW), U.N. Educ., Sci., and Cult. Org., Paris.
  • Drever, J. I. (1997), The Geochemistry of Natural Waters: Surface and Groundwater Environments, 3rd ed., 436 pp., Prentice-Hall, Upper Saddle River, N. J.
  • Dürr, H. H. (2003), Vers une typologie des systèmes fluviaux à l'échelle globale: quelques concepts et exemples à résolution moyenne, thèse de doctorat, 721 pp., Univ. Paris VI - Pierre et Marie Curie, Paris.
  • Dzhamalov, R. G., et al. (1999), World Map of Hydrogeological Conditions and Groundwater Flow, 1st ed., scale varying by latitude between 1:3,000,000 and 1:12,000,000, Hydrosci., St. Paul, Minn.
  • Einsele, G. (1992), Sedimentary Basins: Evolution, Facies, and Sediment Budget, 628 pp., Springer, New York.
  • European Soil Bureau (1998), Soil Geographical Data Base of Europe, vers. 3.2.8.0, Space Appl. Inst. Joint Res. Cent., Ispra, Italy. (Available at http://dataservice.eea.eu.int/dataservice/metadetails.asp?id = S196).
  • Fekete, B. M., C. J. Vörösmarty, and W. Grabs (2002), High-resolution fields of global runoff combining observed river discharge and simulated water balances, Global Biogeochem. Cycles, 16(3), 1042, doi:10.1029/1999GB001254.
  • Food and Agriculture Organization/U.N. Educational, Scientific, and Cultural Organization (FAO/UNESCO) (1975), Carte mondiale des sols, 1:5,000,000, Paris.
  • Food and Agriculture Organization/U.N. Educational, Scientific, and Cultural Organization (FAO/UNESCO) (1986), Gridded FAO/UNESCO soil units: UNEP/GRID, FAO soil map of the world in digital form, digital raster data on 2-minute geographic (lat × lon) 5400 × 10800 grid, Carouge, Switzerland.
  • Ford, D. C., and P. W. Williams (1989), Karst Geomorphology and Hydrology, 601 pp., CRC, Boca Raton, Fla.
  • Füchtbauer, H. (1974), Sediments and Sedimentary Rocks 1, edited by W. van Engelhardt, H. Füchtbauer, and G. Müller, 464 pp., John Wiley, Hoboken, N. J.
  • Gaillardet, J., B. Dupré, P. Louvat, and C. J. Allègre (1999), Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chem. Geol., 159, 330.
  • Galy, A., and C. France-Lanord (1999), Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget, Chem. Geol., 159, 3160.
  • Garrels, R. M., and F. T. Mackenzie (1969), Sedimentary rock types: Relative proportions as a function of geological time, Science, 163, 570571.
  • Garrels, R. M., and F. T. Mackenzie (1971), Evolution of Sedimentary Rocks, 397 pp., W. W. Norton, New York.
  • Gibbs, M. T., and L. R. Kump (1994), Global chemical erosion during the Last Glacial Maximum and the present: Sensitivity changes in lithology and hydrology, Paleoceanography, 9(4), 529543.
  • Gibbs, M. T., G. J. S. Bluth, P. J. Fawcett, and L. R. Kump (1999), Global chemical erosion over the last 250 My: Variations due to changes in paleogeography, paleoclimate, and paleogeology, Am. J. Sci., 299, 611651.
  • Green, P., C. J. Vörösmarty, M. Meybeck, J. Galloway, B. Peterson, and E. Boyer (2004), Pre-industrial and contemporary fluxes of nitrogen through rivers: A global assessment based on typology, Biogeochemistry, 68, 71105.
  • Holland, H. D. (1978), The Chemistry of the Atmosphere and Oceans, 351 pp., John Wiley, Hoboken, N. J.
  • Hooke, R. L. (2000), On the history of humans as geomorphic agents, Geology, 28(9), 843846.
  • Jansen, J. M. I., and R. B. Painter (1974), Predicting sediment yield from climate and topography, J. Hydrol., 21, 371380.
  • Kao, S. J., and K. K. Liu (2002), Exacerbation of erosion induced by human perturbation in a typical Oceania watershed: Insight from 45 years of hydrological records from the Lanyang-Hsi River, northern Taiwan, Global Biogeochem. Cycles, 16(1), 1016, doi:10.1029/2000GB001334.
  • Kleiber, H. P., and F. Niessen (1999), Late Pleistocene paleoriver channels of the Laptev Sea: Shelf-implication for sub-bottom filling, in Land-Ocean Systems in the Siberian Arctic, edited by H. Kassens et al., pp. 657665, Springer, New York.
  • Lagny, P., J.-M. Rouchy, F. Orszag-Sperber, C. Pierre, and N. Guilhaumou (2001), Les évaporites, Geochronique, 80, 1036.
  • Ludwig, W. (1996), Continental erosion and river transport of organic carbon to the world's oceans, thèse de doctorat, 211 pp., U.F.R. des Sci. de la vie et de la terre, Inst. de Géol., Univ. Louis Pasteur, Strasbourg, France.
  • Ludwig, W., and J.-L. Probst (1998), River sediment discharge to the oceans: Present-day controls and global budgets, Am. J. Sci., 298, 265295.
  • Ludwig, W., J.-L. Probst, and S. Kempe (1996), Predicting the oceanic input of organic carbon by continental erosion, Global Biogeochem. Cycles, 10(1), 2341.
  • Ludwig, W., P. Amiotte-Suchet, G. Munhoven, and J.-L. Probst (1998), Atmospheric CO2 consumption by continental erosion: Present-day controls and implications for the Last Glacial Maximum, Global Planet. Change, 16–17, 107120.
  • Ludwig, W., P. Amiotte-Suchet, and J.-L. Probst (1999), Enhanced chemical weathering of rocks during the Last Glacial Maximum: A sink for atmospheric CO2? Chem. Geol., 159, 147161.
  • Mackenzie, F. T., and J. A. Mackenzie (1995), Our Changing Planet: An Introduction to Earth System Science and Global Environment Change, Prentice-Hall, Upper Saddle River, N. J.
  • Messerli, B., M. Grosjean, T. Hofer, L. Nuñez, and C. Pfister (2000), From nature-dominated to human-dominated environmental changes, Quat. Sci. Rev., 19(1–5), 459479.
  • Meybeck, M. (1982), Carbon, nitrogen and phosphorus transport by world rivers, Am. J. Sci., 282, 401450.
  • Meybeck, M. (1987), Global chemical weathering of surficial rocks estimated from river dissolved loads, Am. J. Sci., 287, 401428.
  • Meybeck, M. (1993), Riverine transport of atmospheric carbon: Sources, global typology and budget, Water Air Soil Pollut., 70, 443463.
  • Meybeck, M. (2002), Riverine quality at the Anthropocene: Propositions for global space and time analysis, illustrated by the Seine River, Aquat. Sci., 64, 376393.
  • Meybeck, M. (2003), Global occurrence of major elements in rivers, in Treatise on Geochemistry, vol. 5, edited by H. D. Holland, and K. K. Turekian, pp. 207224, Elsevier, New York.
  • Meybeck, M., and C. Vörösmarty (2005), Fluvial filtering of land-to-ocean fluxes: From natural Holocene variations to Anthropocene, C. R. Acad. Sci. Geosci., 337, 107123.
  • Meybeck, M., P. Green, and C. Vörösmarty (2001), A new typology for mountains and other relief classes, Mt. Res. Dev., 21, 3445.
  • Milliman, J. D., and R. H. Meade (1983), World-wide delivery of river sediment to the oceans, J. Geol., 91, 121.
  • Milliman, J. D., and J. P. M. Syvitski (1992), Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers, J. Geol., 100, 525544.
  • Millot, R., J. Gaillardet, B. Dupré, and C. J. Allègre (2002), The global control of silicate weathering rates and the coupling with physical erosion: New insights from rivers of the Canadian Shield, Earth Planet. Sci. Lett., 196, 8398.
  • Moores, E. M., and R. W. Fairbridge (Eds.) (1997), Encyclopedia of European and Asian Regional Geology, 804 pp., CRC, Boca Raton, Fla.
  • Moores, E. M., and R. J. Twiss (1995), Tectonics, 415 pp., W. H. Freeman, New York.
  • Pécsi, M. (1990), Loess is not just an accumulation of dust, Quat. Int., 7–8, 121.
  • Pécsi, M., and G. Richter (1996), Löss: Herkunft-Gliederung-Landschaften, Z. Geomorphol. 98, Suppl., 391 pp.
  • Potter, P. E. (1978), Petrology and chemistry of modern big river sands, J. Geol., 86, 423449.
  • Press, F., and R. Siever (1994), Allgemeine Geologie-Eine Einführung, 602 pp., Spektrum Akad. Verlag, Heidelberg, Germany.
  • Probst, J. L., J. Mortatti, and Y. Tardi (1994), Carbon river fluxes and weathering CO2 consumption in the Congo and Amazon river basins, Appl. Geochem., 9, 113.
  • Reeder, S., B. Hitchon, and A. A. Levinson (1972), Hydrogeochemistry of the surface waters of the Mackenzie river drainage basin, Canada: 1. Factors controlling inorganic composition, Geochim. Cosmochim. Acta, 36, 181192.
  • Ronov, A. B. (1968), Probable changes in the composition of sea water during the course of geological time, Sedimentology, 10, 2543.
  • Ronov, A. B. (1972), Earth's crust geochemistry, in The Encyclopedia of Geochemistry and Environmental Sciences, Encyc. Earth Sci. Ser., vol. IVA, edited by R. W. Fairbridge, pp. 243254, John Wiley, Hoboken, N. J.
  • Ronov, A. B. (1976), Global carbon geochemistry, volcanism, carbonate accumulation, and life, Geokhimiya, 8, 12521277. (Geochem. Int., Engl. Transl., 13(4), 172–195.).
  • Ronov, A. B., and A. A. Yaroshevskiy (1976), A new model for the chemical structure of the Earth's crust, Geokhimiya, 12, 17611795, (Geochem. Int., Engl. Transl., 13(6), 89–121.).
  • Ronov, A. B., V. Y. Khain, A. N. Balukhovskiy, and K. B. Seslavinsky (1980), Quantitative analysis of Phanerozoic sedimentation, Sediment. Geol., 23, 311325.
  • Seitzinger, S. P., C. Kroeze, A. F. Bouwman, N. Caraco, F. Dentener, and R. V. Stylkes (2002), Global patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems: Recent conditions and future projections, Estuaries, 25(4b), 640655.
  • Slomp, C. P., and P. Van Cappellen (2004), Groundwater inputs of nutrients to the coastal zone: Controls and potential impact, J. Hydrol., 295, 6486.
  • Snead, R. E. (1980), World Atlas of Geomorphic Features, Krieger, Melbourne, Fla.
  • Stallard, R. F. (1985), River chemistry, geology, geomorphology, and soils in the Amazon and Orinoco Basins, in The Chemistry of Weathering, edited by J. I. Drever, pp. 293316, Springer, New York.
  • Stallard, R. F., and J. M. Edmond (1983), Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load, J. Geophys. Res., 88(C14), 96719688.
  • Stanley, S. M. (1994), Historische Geologie: Eine Einführung in die Geschichte der Erde und des Lebens, 632 pp., Spektrum Akad. Verlag, Heidelberg, Germany.
  • Steffen, W., et al. (Eds.) (2004), Global Change and the Earth System: A Planet Under Pressure, Springer, New York.
  • Summerfield, M. A. (1991), Global Geomorphology: An Introduction to the Study of Landforms, 1st ed., 515 pp., Longman, New York.
  • Summerfield, M. A. (2000), Geomorphology and Global Tectonics, 1st ed., John Wiley, Hoboken, N. J.
  • Taylor, S. R., S. M. McLennan, and M. T. McCulloch (1983), Geochemistry of loess, continental crustal composition and crustal model ages, Geochim. Cosmochim. Acta, 47, 18971905.
  • Veizer, J., and S. L. Jansen (1979), Basement and sedimentary recycling and continental evolution, J. Geol., 87, 341370.
  • Veizer, J., and F. T. Mackenzie (2003), Evolution of sedimentary rocks, in Treatise on Geochemistry, vol. 7, edited by H. D. Holland, and K. K. Turekian, pp. 369407, Elsevier, New York.
  • Ver, L. M., F. T. Mackenzie, and A. Lerman (1999), Biogeochemical responses of the carbon cycle to natural and human perturbations: Past, present and future, Am. J. Sci., 199, 762801.
  • Vörösmarty, C. J., and M. Meybeck (2004), Responses of continental aquatic systems at the global scale: New paradigms, new methods, in Vegetation, Water, Humans and the Climate, edited by P. Kabat et al., pp. 375413, Springer, New York.
  • Vörösmarty, C. J., K. Sharma, B. Fekete, A. H. Copeland, J. Holden, J. Marble, and J. A. Lough (1997), The storage and aging of continental runoff in large reservoir systems of the world, Ambio, 26, 210219.
  • Vörösmarty, C. J., B. M. Fekete, M. Meybeck, and R. B. Lammers (2000a), The global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages, Global Biogeochem. Cycles, 14(2), 599621.
  • Vörösmarty, C. J., B. M. Fekete, M. Meybeck, and R. B. Lammers (2000b), Geomorphometric attributes of the global system of rivers at 30-minute spatial resolution, J. Hydrol., 237, 1739.
  • Vörösmarty, C. J., P. Green, J. Salisbury, and R. B. Lammers (2000c), Global water resources: Vulnerability from climate change and population growth, Science, 289, 284288.
  • Vörösmarty, C. J., M. Meybeck, B. Fekete, K. Sharma, P. Green, and J. Syvitski (2003), Anthropogenic sediment retention: Major global-scale impact from the population of registered impoundments, Global Planet. Change, 39, 169190.
  • Warren, J. (1999), Evaporites: Their Evolution and Economics, 438 pp., Blackwell, Malden, Mass.
  • Zektser, I. S., and H. A. Loaiciga (1993), Groundwater fluxes in the global hydrologic cycle: Past, present, and future, J. Hydrol., 144, 405427.
  • Zektser, I. S., V. A. Ivanov, and A. V. Meskheteli (1973), The problem of direct groundwater discharge to the seas, J. Hydrol., 20, 136.