SEARCH

SEARCH BY CITATION

References

  • Berg, P., N. Risgaard-Petersen, and S. Rysgaard (1998), Interpretation of measured concentration profiles in sediment pore water, Limnol. Oceanogr., 43, 15001510.
  • Bergman, I., P. Lundberg, and M. Nilsson (1999), Microbial carbon mineralisation in an acid surface peat: Effects of environmental factors in laboratory incubations, Soil Biol. Biochem., 31, 18671877.
  • Blodau, C., and T. R. Moore (2002), Macroporosity affects water movement and pore water sampling in peat soils, Soil Sci., 167, 98109.
  • Blodau, C., and T. R. Moore (2003), Micro-scale CO2 and CH4 dynamics in a peat soil during a water fluctuation and sulfate pulse, Soil Biol. Biochem., 35, 535547.
  • Blodau, C., C. L. Roehm, and T. Moore (2002), Iron, sulfur and dissolved carbon dynamics in a northern peatland, Arch. Hydrobiol., 154, 561583.
  • Blodau, C., N. Basiliko, and T. R. Moore (2004), Carbon turnover in peatland mesocosms exposed to different water table levels, Biogeochemistry, 67, 331351.
  • Boone, R. D., K. J. Nadelhoffer, J. D. Canary, and J. P. Kaye (1998), Roots exert a strong influence on the temperature sensitivity of soil respiration, Nature, 396, 570572.
  • Bridgham, S. D., C. A. Johnston, and J. Pastor (1995), Potential feedbacks of northern wetlands on climate change, BioScience, 45, 262274.
  • Bridgham, S. D., K. Updegraff, and J. Pastor (1998), Carbon, nitrogen, and phosphorus mineralization in northern wetlands, Ecology, 79, 15451561.
  • Bubier, J. L., P. M. Crill, T. R. Moore, K. Savage, and R. K. Varner (1998), Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex, Global Biogeochem. Cycles, 12, 703714.
  • Bubier, J. L., G. Bhatia, T. R. Moore, N. T. Roulet, and P. M. Lafleur (2003), Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada, Ecosystems, 6, 353367.
  • Carroll, P., and P. Crill (1997), Carbon balance of a temperate poor fen, Global Biogeochem. Cycles, 11, 349356.
  • Cornell, P. K., R. S. Summers, and P. V. Roberts (1986), Diffusion of humic acid in dilute aqueous solution, J. Colloid Interface Sci., 110, 149164.
  • Dalva, M., and T. R. Moore (1991), Sources and sinks of dissolved organic carbon in a forested swamp catchment, Biogeochemistry, 15, 119.
  • Fechner-Levy, E. J., and H. F. Hemond (1996), Trapped methane volume and potential effects on methane ebullition in a northern peatland, Limnol. Oceanogr., 41, 13751383.
  • Fraser, C. J. D., N. T. Roulet, and T. R. Moore (2001), Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog, Hydrol. Processes, 15, 31513166.
  • Frolking, S., N. T. Roulet, T. R. Moore, P. M. Lafleur, J. L. Bubier, and P. M. Crill (2002), Modeling seasonal to annual carbon balance of Mer Bleue Bog, Ontario, Canada, Global Biogeochem. Cycles, 16(3), 1030, doi:10.1029/2001GB001457.
  • Hornibrook, E. R. C., F. J. Longstaffe, and W. S. Fyfe (1997), Spatial distribution of microbial methane production pathways in temperate zone wetland soils: Stable carbon and hydrogen isotope evidence, Geochim. Cosmochim. Acta, 61, 745753.
  • Kettunen, A., V. Kaitala, J. Alm, J. Silvola, H. Nykänen, and P. J. Martikainen (1996), Cross-correlation analysis of the dynamics of methane emissions from a boreal peatland, Global Biogeochem. Cycles, 10, 457471.
  • Kettunen, A., V. Kaitala, A. Lehtinen, A. Lohila, J. Alm, J. Silvola, and P. J. Martikainen (1999), Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires, Soil Biol. Biochem., 31, 17411749.
  • Kivinen, E., and P. Pakarinen (1981), Geographical distribution of peat resources and major peatland complex types in the world, Ann. Acad. Sci. Fenn., Ser. A., 32, 128.
  • Koprivnjak, J.-F., and T. R. Moore (1992), Sources, sinks and fluxes of dissolved organic carbon in subarctic fen catchments, Arct. Alp. Res., 24, 204210.
  • Lafleur, P. M., N. T. Roulet, and S. Admiral (2001), The annual cycle of CO2 exchange at a boreal bog peatland, J. Geophys. Res., 106, 30713081.
  • Lafleur, P. M., N. T. Roulet, J. L. Bubier, S. Frolking, and T. R. Moore (2003), Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog, Global Biogeochem. Cycles, 17(2), 1036, doi:10.1029/2002GB001983.
  • Lafleur, P. M., T. R. Moore, N. T. Roulet, and S. Frolking (2005), Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table, Ecosystems, 8, 619629.
  • Lerman, A. (1979), Geochemical Processes: Water and Sediment Environments, John Wiley, Hoboken, N. J.
  • McKenzie, C., S. Schiff, R. Aravena, C. Kelly, and V. St. Louis (1998), Effect of temperature on production of CH4 and CO2 from peat in a natural and flooded boreal forest wetland, Clim. Change, 40, 247266.
  • McKnight, D., E. M. Thurman, R. L. Wershaw, and H. Hemond (1985), Biogeochemistry of aquatic humic substances in Thoreau Bog, Concord, Massachusetts, Ecology, 66, 13391352.
  • Mikaloff Fletcher, S. E., P. P. Tans, L. M. Bruhwiler, J. B. Miller, and M. Heimann (2004), CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes, Global Biogeochem. Cycles, 18, GB4004, doi:10.1029/2004GB002223.
  • Moore, T. R. (1987), Patterns of dissolved organic matter in subarctic peatlands, Earth Surf. Processes Landforms, 12, 387397.
  • Moore, T. R. (1988), Dissolved iron and organic matter in northern peatlands, Soil Sci., 145, 7076.
  • Moore, T. R., and M. Dalva (1993), The influence of temperature and water-table position on carbon dioxide and methane emissions from laboratory columns of peatland soils, J. Soil Sci., 44, 651664.
  • Moore, T. R., and M. Dalva (1997), Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations, Soil Biol. Biochem., 29, 11571164.
  • Moore, T. R., and M. Dalva (2001), Some controls on the release of dissolved organic carbon by plant tissues and soils, Soil Sci., 166, 3847.
  • Moore, T. R., N. T. Roulet, and J. M. Waddington (1998), Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands, Clim. Change, 40, 229245.
  • Moore, T. R., J. L. Bubier, S. E. Frolking, P. M. Lafleur, and N. T. Roulet (2002), Plant biomass and production and CO2 exchange in an ombrotrophic bog, J. Ecol., 90, 2536.
  • Mott, R. J., and M. Camfield (1969), Palynological studies in the Ottawa area, Pap. 69-38, Geol. Surv. of Can., Ottawa, Ont., Canada.
  • Nedwell, D. B., and A. Watson (1995), CH4 production, oxidation and emission in a UK ombrotrophic peat bog–Influence of SO42- from acid rain, Soil Biol. Biochem., 27, 893903.
  • Nilsson, M., and E. Bohlin (1993), Methane and carbon dioxide concentrations in bogs and fens with special reference to the effects of the botanical composition of the peat, J. Ecol., 81, 615625.
  • Roehm, C. L., and N. T. Roulet (2003), Seasonal contribution of CO2 fluxes in the annual C budget of a northern bog, Global Biogeochem. Cycles, 17(1), 1029, doi:10.1029/2002GB001889.
  • Scanlon, D., and T. R. Moore (2000), Carbon dioxide production from peatland soil profiles: The influence of temperature, oxic/anoxic conditions and substrate, Soil Sci., 165, 153160.
  • Shannon, R. D., and J. R. White (1996), The effects of spatial and temporal variations in acetate and sulfate on methane cycling in two Michigan peatlands, Limnol. Oceanogr., 41, 435443.
  • Silvola, J., J. Alm, U. Ahlhom, H. Nykänen, and P. J. Martikainen (1996), CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions, J. Ecol., 84, 219228.
  • Stewart, H. (2006), Partitioning belowground respiration in a northern peatland, M.S. thesis, McGill Univ., Montreal, Quebec, Canada.
  • Turunen, J., E. Tomppo, K. Tolonen, and A. Reinikainen (2002), Estimating carbon accumulation rates of undrained mires in Finland—Application to boreal and subarctic regions, Holocene, 12, 6980.
  • Updegraff, K., J. Pastor, S. D. Bridgham, and C. A. Johnston (1995), Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands, Ecol. Appl., 5, 151163.
  • Updegraff, K., S. D. Bridgham, J. Pastor, P. Weishampel, and C. Harth (2001), Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation, Ecol. Appl., 11, 311326.
  • Urban, N. R., S. E. Bayley, and S. J. Eisenreich (1989), Export of dissolved organic carbon and acidity from peatlands, Water Resour. Res., 25, 16191628.
  • Verhoeven, J. T. A., and E. Toth (1995), Decomposition of Carex and Sphagnum litter in fens: Effect of litter quality and inhibition by living tissue homogenates, Soil Biol. Biochem., 27, 271275.
  • Vile, M. A., S. D. Bridgham, R. K. Wieder, and M. Novák (2003), Atmospheric sulfur deposition alters pathways of gaseous carbon production in peatlands, Global Biogeochem. Cycles, 17(2), 1058, doi:10.1029/2002GB001966.
  • Waddington, J. M., and N. T. Roulet (1997), Groundwater flow and dissolved carbon movement in a boreal peatland, J. Hydrol., 191, 122138.
  • Wieder, R. K., J. B. Yavitt, and G. E. Lang (1990), Methane production and sulfate reduction in two Appalachian peatlands, Biogeochemistry, 10, 81104.
  • Yavitt, J. B., C. J. Williams, and R. K. Wieder (1997), Production of methane and carbon dioxide in peatland ecosystems across North America: Effects of temperature, aeration, and organic chemistry of the peat, Geomicrobiol. J., 14, 299316.