SEARCH

SEARCH BY CITATION

References

  • Abouchami, W., A. W. Hofmann, S. J. G. Galer, F. A. Frey, J. Eisele, and M. Feigenson (2005), Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume, Nature, 434, 851856.
  • Aharonov, E., M. Spiegelman, and P. Kelemen (1997), Three-dimensional flow and reaction in porous media: Implications for the Earth's mantle and sedimentary basins, J. Geophys. Res., 102, 14,82114,833.
  • Allan, J. F., R. O. Sack, and R. Batiza (1988), Cr-rich spinels as petrogenetic indicators: MORB-type lavas from the Lamont seamount chain, eastern Pacific, Am. Mineral., 73, 741753.
  • Baker, M. B., and E. M. Stolper (1994), Determining the composition of high-pressure mantle melts using diamond aggregates, Geochim. Cosmochim. Acta, 58, 28112827.
  • Barth, M. G., R. L. Rudnick, I. Horn, W. F. McDonough, M. J. Spicuzza, J. W. Valley, and S. E. Haggerty (2001), Geochemistry of xenolithic eclogites from West Africa; Part I, A link between low MgO eclogites and Archean crust formation, Geochim. Cosmochim. Acta, 65, 14991527.
  • Basu, A. R., and B. E. Faggart Jr. (1996), Temporal isotopic variations in the Hawaiian mantle plume: The Lanai anomaly, the Molokai Fracture Zone and a seawater-altered component in Hawaiian volcanism, in Earth Processes: Reading the Isotopic Code, Geophys. Monogr. Ser., vol. 95, edited by A. Basu, and S. Hart, pp. 149159, AGU, Washington, D. C.
  • Blichert-Toft, J., C. Chauvel, and F. Albarède (1997), Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS, Contrib. Mineral. Petrol., 127, 248260.
  • Blichert-Toft, J., F. A. Frey, and F. Albarède (1999), Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts, Science, 285, 879882.
  • Blichert-Toft, J., D. Weis, C. Maerschalk, A. Agranier, and F. Albarède (2003), Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano, Geochem. Geophys. Geosyst., 4(2), 8704, doi:10.1029/2002GC000340.
  • Blusztajn, J., S. R. Hart, G. Ravizza, and H. J. B. Dick (2000), Platinum-group elements and Os isotopic characteristics of the lower oceanic crust, Chem. Geol., 168, 113122.
  • Borg, L., A. Brandon, M. Clynne, and R. Walker (2000), Re-Os isotopic systematics of primitive lavas from the Lassen region of the Cascade arc, California, Earth Planet. Sci. Lett., 177, 301317.
  • Brandon, A. D., H. Becker, R. Carlson, and S. Shirey (1999), Isotopic constraints on time scales and mechanisms of slab material transport in the mantle wedge: Evidence from the Simcoe mantle xenoliths, Washington, USA, Chem. Geol., 160, 387407.
  • Brandon, A. D., J. E. Snow, R. J. Walker, J. W. Morgan, and T. D. Mock (2000), 190Pt-186Os and 187Re-187Os systematics of abyssal peridotites, Earth Planet. Sci. Lett., 177, 319335.
  • Budahn, J. R., and R. A. Schmitt (1985), Petrogenetic modeling of Hawaiian tholeiitic basalts: A geochemical approach, Geochim. Cosmochim. Acta, 49, 6787.
  • Chauvel, C., and C. Hémond (2000), Melting of a complete section of recycled oceanic crust: Trace element and Pb isotopic evidence from Iceland, Geochem. Geophys. Geosyst., 1(2), doi:10.1029/1999GC000002.
  • Chen, C.-Y. (1993), High-magnesium primary magmas from Haleakala Volcano, east Maui, Hawaii: Petrography, nickel, and major-element constraints, J. Volcanol. Geotherm. Res., 55, 143153.
  • Chen, C.-Y., and F. A. Frey (1985), Trace element and isotopic geochemistry of lavas from Haleakala Volcano, East Maui, Hawaii: Implications for the origin of Hawaiian basalts, J. Geophys. Res., 90, 87438768.
  • Chen, C.-Y., F. A. Frey, M. O. Garcia, G. B. Dalrymple, and S. R. Hart (1991), The tholeiite to alkalic basalt transition at Haleakala Volcano, Maui, Hawaii, Contrib. Mineral. Petrol., 106, 183200.
  • Clague, D. A., J. G. Moore, J. E. Dixon, and W. E. Freisen (1995), Petrology of submarine lavas from Kilauea's Puna Ridge, Hawaii, J. Petrol., 36, 299349.
  • Cocker, J. D., B. J. Griffin, K. Muehlenbachs, J. A. Miller, I. Cartwright, I. S. Buick, and A. C. Barnicoat (1982), Oxygen and carbon isotope evidence for seawater-hydrothermal alteration of the Macquarie Island ophiolite, Earth Planet. Sci. Lett., 61, 112122.
  • DePaolo, D. J., J. G. Bryce, A. Dodson, D. L. Shuster, and B. M. Kennedy (2001), Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume, Geochem. Geophys. Geosyst., 2(7), doi:10.1029/2000GC000139.
  • du Vignaux, N. M., and L. Fleitout (2001), Stretching and mixing of viscous blobs in Earth's mantle, J. Geophys. Res., 106, 30,89330,908.
  • Eggins, S. M. (1992), Petrogenesis of Hawaiian tholeiites: I, Phase equilibria constraints, Contrib. Mineral. Petrol., 110, 387397.
  • Eiler, J. M., K. A. Farley, J. W. Valley, A. W. Hofmann, and E. M. Stolper (1996), Oxygen isotope constraints on the sources of Hawaiian volcanism, Earth Planet. Sci. Lett., 144, 453468.
  • Eiler, J. M., K. A. Farley, and E. M. Stolper (1998), Correlated helium and lead isotope variations in Hawaiian lavas, Geochim. Cosmochim. Acta, 62, 19771984.
  • Eisele, J., W. Abouchami, S. J. G. Galer, and A. W. Hofmann (2003), The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP-2 drill core, Geochem. Geophys. Geosyst., 4(5), 8710, doi:10.1029/2002GC000339.
  • Farnetani, C. G., B. Legras, and P. J. Tackley (2002), Mixing and deformations in mantle plumes, Earth Planet. Sci. Lett., 196, 115.
  • Feigenson, M. D., L. L. Bolge, M. J. Carr, and C. T. Herzberg (2003), REE inverse modeling of HSDP2 basalts: Evidence for multiple sources in the Hawaiian plume, Geochem. Geophys. Geosyst., 4(2), 8706, doi:10.1029/2001GC000271.
  • Fodor, R. V., G. R. Bauer, R. S. Jacobs, and T. J. Bornhorst (1987), Kahoolawe Island, Hawaii: Tholeiitic, alkalic and unusual hydrothermal (?) ‘enrichment’ characteristics, J. Volcanol. Geotherm. Res., 31, 171176.
  • Fodor, R. V., F. A. Frey, G. R. Bauer, and D. A. Clague (1992), Ages, rare-earth element enrichment, and petrogenesis of tholeiitic and alkalic basalts from Kahoolawe Island, Hawaii, Contrib. Mineral. Petrol., 110, 442462.
  • Frey, F. A., M. O. Garcia, and M. F. Roden (1994), Geochemical characteristics of Koolau Volcano: Implications of intershield geochemical differences among Hawaiian volcanoes, Geochim. Cosmochim. Acta, 58, 14411462.
  • Frey, F. A., S. Huang, J. Blichert-Toft, M. Regelous, and M. Boyet (2005), Origin of depleted components in basalt related to the Hawaiian hot spot: Evidence from isotopic and incompatible element ratios, Geochem. Geophys. Geosyst., 6, Q02L07, doi:10.1029/2004GC000757.
  • Frueh-Green, G., D. Kelley, S. Bernasconi, J. Karson, K. Ludwig, D. A. Butterfield, C. Boschi, and G. Proskurowski (2003), 30,000 years of hydrothermal activity at the Lost City vent field, Science, 301, 495498.
  • Gaffney, A. M., B. K. Nelson, and J. Blichert-Toft (2004), Geochemical constraints on the role of oceanic lithosphere in intra-volcano heterogeneity at West Maui, Hawaii, J. Petrol., 45, 16631687.
  • Gaffney, A. M., B. K. Nelson, L. Reisberg, and J. M. Eiler (2005), Oxygen-osmium isotope systematics of West Maui lavas: A record of shallow-level magmatic processes, Earth Planet. Sci. Lett., in press.
  • Ghiorso, M. S., and R. O. Sack (1995), Chemical Mass Transfer in Magmatic Processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures, Contrib. Mineral. Petrol., 119, 197212.
  • Ghiorso, M. S., M. M. Hirschmann, P. W. Reiners, and V. C. Kress III (2002), The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa, Geochem. Geophys. Geosyst., 3(5), 1030, doi:10.1029/2001GC000217.
  • Green, D. H., and A. E. Ringwood (1967), The genesis of basaltic magmas, Contrib. Mineral. Petrol., 15, 103190.
  • Gregory, R. T., and H. P. Taylor Jr. (1981), An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges, J. Geophys. Res., 86, 27372755.
  • Hart, S. R., J. Blusztajn, H. J. B. Dick, P. S. Meyer, and K. Muehlenbachs (1999), The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros, Geochim. Cosmochim. Acta, 63, 40594080.
  • Hauri, E. H. (1996), Major-element variability in the Hawaiian mantle plume, Nature, 382, 415419.
  • Hauri, E. H. (1997), Melt migration and mantle chromatography, 2: A time-series Os isotope study of Mauna Loa volcano, Hawaii, Earth Planet. Sci. Lett., 153, 2136.
  • Hauri, E. H., and S. R. Hart (1995), Correction to “Constraints on melt migration from mantle plumes: A trace element study of peridotite xenoliths from Savai'i, Western Samoa,”, J. Geophys. Res., 100(B2), 20032004.
  • Hauri, E. H., J. A. Whitehead, and S. R. Hart (1994), Fluid dynamic and geochemical aspects of entrainment in mantle plumes, J. Geophys. Res., 99, 24,27524,300.
  • Helz, R. T., and T. L. Wright (1992), Differentiation and magma mixing on Kilauea's east rift zone, Bull. Volcanol., 54, 361384.
  • Herzberg, C., and M. J. O'Hara (2002), Plume-associated ultramafic magmas of Phanerozoic age, J. Petrol., 43, 18571883.
  • Hirschmann, M. M., and E. M. Stolper (1996), A possible role for garnet pyroxenite in the origin of the ‘garnet signature’ in MORB, Contrib. Mineral. Petrol., 124, 185208.
  • Hirschmann, M. M., T. Kogiso, M. B. Baker, and E. M. Stolper (2003), Alkalic magmas generated by partial melting of garnet pyroxenite, Geology, 31, 481484.
  • Hoffman, S. E., M. Wilson, and D. S. Stakes (1986), Inferred oxygen isotope profile of Archaean oceanic crust, Onverwacht Group, South Africa, Nature, 321, 5558.
  • Hofmann, A., M. D. Feigenson, and I. Raczek (1984), Case studies on the origin of basalt: III. Petrogenesis of the Mauna Ulu eruption, Kilauea, 1969–1971, Contrib. Mineral. Petrol., 88, 2435.
  • Huang, S., and F. A. Frey (2003), Trace element abundances of Mauna Kea basalt from phase 2 of the Hawaii Scientific Drilling Project: Petrogenetic implications of correlations with major element content and isotopic ratios, Geochem. Geophys. Geosyst., 4(6), 8711, doi:10.1029/2002GC000322.
  • Huang, S., M. Regelous, T. Thordarson, and F. A. Frey (2005), Petrogenesis of lavas from Detroit Seamount: Geochemical differences between Emperor Chain and Hawaiian volcanoes, Geochem. Geophys. Geosyst., 6, Q01L06, doi:10.1029/2004GC000756.
  • Jackson, E. D., E. A. Silver, and G. B. Dalrymple (1972), Hawaiian-Emperor chain and its relation to Cenozoic circumpacific tectonics, Geol. Soc. Am. Bull., 83, 601617.
  • Jackson, M., F. A. Frey, M. O. Garcia, and R. A. Wilmoth (1999), Geology and geochemistry of basaltic lava flows and dikes from the Trans-Koolau tunnel, Oahu, Hawaii, Bull. Volcanol., 60, 381401.
  • Johnson, D. M., P. R. Hooper, and R. M. Conrey (1999), XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead, Adv. X-Ray Anal., 41, 843867.
  • Johnson, M. C., and T. Plank (1999), Dehydration and melting experiments constrain the fate of subducted sediments, Geochem. Geophys. Geosyst., 1(1), doi:10.1029/1999GC000014.
  • Kelemen, P. B., J. A. Whitehead, E. Aharonov, and K. A. Jordahl (1995), Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle, J. Geophys. Res., 100, 475496.
  • Klemme, S., J. D. Blundy, and B. J. Wood (2002), Experimental constraints on major and trace element partitioning during partial melting of eclogite, Geochim. Cosmochim. Acta, 66, 31093123.
  • Kogiso, T., Y. Tatsumi, and S. Nakano (1997), Trace element transport during dehydration processes in the subducted oceanic crust; 1, Experiments and implications for the origin of ocean island basalts, Earth Planet. Sci. Lett., 148, 193205.
  • Kogiso, T., K. Hirose, and E. Takahashi (1998), Melting experiments on homogeneous mixtures of peridotite and basalt: Application to the genesis of ocean island basalts, Earth Planet. Sci. Lett., 162, 4561.
  • Kogiso, T., M. M. Hirschmann, and D. J. Frost (2003), High-pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts, Earth Planet. Sci. Lett., 216, 603617.
  • Kogiso, T., M. M. Hirschmann, and M. Pertermann (2004a), High-pressure partial melting of mafic lithologies in the mantle, J. Petrol., 45, 24072422.
  • Kogiso, T., M. M. Hirschmann, and P. W. Reiners (2004b), Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry, Geochim. Cosmochim. Acta, 68, 345360.
  • Kurz, M. D., W. J. Jenkins, S. R. Hart, and D. A. Clague (1983), Helium isotopic variations in volcanic rocks from Loihi Seamount and the island of Hawaii, Earth Planet. Sci. Lett., 66, 388406.
  • Kurz, M. D., M. O. Garcia, F. A. Frey, and P. A. O'Brien (1987), Temporal helium isotopic variations within Hawaiian volcanoes: Basalts from Mauna Loa and Haleakala, Geochim. Cosmochim. Acta, 51, 29052914.
  • Kurz, M. D., T. C. Kenna, D. P. Kammer, J. M. Rhodes, and M. O. Garcia (1995), Isotopic evolution of Mauna Loa Volcano: A view from the submarine southwest rift zone, in Mauna Loa Revealed: Structure, Composition, History and Hazards, Geophys. Monogr. Ser., vol. 92, edited by J. M. Rhodes, and J. P. Lockwood, pp. 289306, AGU, Washington, D. C.
  • Kurz, M. D., J. Curtice, D. E. Lott III, and A. Solow (2004), Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project, Geochem. Geophys. Geosyst., 5, Q04G14, doi:10.1029/2002GC000439.
  • Lassiter, J. C., and E. H. Hauri (1998), Osmium-isotope variations in Hawaiian lavas: Evidence for recycled oceanic lithosphere in the Hawaiian plume, Earth Planet. Sci. Lett., 164, 483496.
  • Lassiter, J. C., D. J. DePaolo, and M. Tatsumoto (1996), Isotopic evolution of Mauna Kea volcano: Results from the initial phases of the Hawaii Scientific Drilling Project, J. Geophys. Res., 101, 11,76911,780.
  • Leeman, W. P., D. C. Gerlach, M. O. Garcia, and H. B. West (1994), Geochemical variation in lavas from Kahoolawe volcano, Hawaii: Evidence for open system evolution of plume-derived magmas, Contrib. Mineral. Petrol., 116, 6672.
  • Martin, C. E., R. W. Carlson, S. B. Shirey, F. A. Frey, and C.-Y. Chen (1994), Os isotopic variation in basalts from Haleakala Volcano, Maui, Hawaii: A record of magmatic processes in oceanic mantle and crust, Earth Planet. Sci. Lett., 128, 287301.
  • McDougall, I. (1964), Potassium-argon ages from lavas of the Hawaiian Islands, Geol. Soc. Am. Bull., 75, 107128.
  • McKenzie, D., and R. K. O'Nions (1991), Partial melt distributions from inversion of rare earth element concentrations, J. Petrol., 32, 10211091.
  • Miller, J. A., I. Cartwright, I. S. Buick, and A. C. Barnicoat (2001), An O-isotope profile through the HP-LT Corsican ophiolite, France and its implications for fluid flow during subduction, Chem. Geol., 178, 4369.
  • Montierth, C., A. D. Johnston, and K. V. Cashman (1995 ), An empirical glass-composition-based geothermometer for Mauna Loa lavas, in Mauna Loa Revealed: Structure, Composition, History and Hazards, Geophys. Monogr. Ser., vol. 92, edited by J. M. Rhodes, and J. P. Lockwood, pp. 207217, AGU, Washington, D. C.
  • Mukhopadhyay, S., J. C. Lassiter, K. A. Farley, and S. W. Bogue (2003), Geochemistry of Kauai shield-stage lavas: Implications for the chemical evolution of the Hawaiian plume, Geochem. Geophys. Geosyst., 4(1), 1009, doi:10.1029/2002GC000342.
  • Naughton, J. J., G. A. Macdonald, and V. A. Greenberg (1980), Some additional potassium-argon ages of Hawaiian rocks: The Maui volcanic complex of Molokai, Maui, Lanai and Kahoolawe, J. Volcanol. Geotherm. Res., 7, 339355.
  • Nelson, B. K. (1995), Fluid flow in subduction zones: Evidence from neodymium and strontium isotope variations in metabasalts of the Franciscan Complex, California, Contrib. Mineral. Petrol., 119, 247262.
  • Nelson, B. K., J. Blichert-Toft, and F. Albarède (2002), Nd-Sr-Hf-Pb isotope correlations in lavas from Lanai, Hawaii, Geochim. Cosmochim. Acta, 66, A550.
  • Niu, Y., and M. J. O'Hara (2003), Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations, J. Geophys. Res., 108(B4), 2209, doi:10.1029/2002JB002048.
  • Norman, M. D., and M. O. Garcia (1999), Primitive magmas and source characteristics of the Hawaiian plume: Petrology and geochemistry of shield picrites, Earth Planet. Sci. Lett., 168, 2744.
  • Norman, M. D., M. O. Garcia, V. S. Kamenetsky, and R. L. Nielsen (2002), Olivine-hosted melt inclusions in Hawaiian picrites: Equilibration, melting, and plume source characteristics, Chem. Geol., 183, 143168.
  • Pertermann, M., and M. M. Hirschmann (2003a), Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2-3 GPa, J. Petrol., 44, 21732201.
  • Pertermann, M., and M. M. Hirschmann (2003b), Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate, J. Geophys. Res., 108(B2), 2125, doi:10.1029/2000JB000118.
  • Pertermann, M., M. M. Hirschmann, K. Hametner, D. Günther, and M. W. Schmidt (2004), Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite, Geochem. Geophys. Geosyst., 5, Q05A01, doi:10.1029/2003GC000638.
  • Rapp, R. P., N. Shimizu, M. D. Norman, and G. S. Applegate (1999), Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa, Chem. Geol., 160, 335356.
  • Roden, M. F., T. Trull, S. R. Hart, and F. A. Frey (1994), New He, Nd, Pb, and Sr isotopic constraints on the constitution of the Hawaiian plume: Results from Koolau Volcano, Oahu, Hawaii, USA, Geochim. Cosmochim. Acta, 58, 14311440.
  • Roeder, P. L., and R. F. Emslie (1970), Olivine-liquid equilibrium, Contrib. Mineral. Petrol., 29, 275289.
  • Sachs, L. (1984), Applied Statistics: A Handbook of Techniques, Springer, New York.
  • Salters, V. J., and A. Zindler (1995), Extreme 176Hf/177Hf in the sub-oceanic mantle, Earth Planet. Sci. Lett., 129, 1330.
  • Salters, V. J. M., and J. Longhi (1999), Trace element partitioning during the initial stages of melting beneath mid-ocean ridges, Earth Planet. Sci. Lett., 166, 1530.
  • Sawyer, N.-L. E. (1999), Systematic geochemical and eruptive relations in the late stage evolution of volcanics form the Hawaiian plume; with case studies of Waianae and East Molokai volcanoes, Ph.D. thesis, Univ. of Wash., Seattle, Wash.
  • Schafer, J. T., C. R. Neal, and M. Regelous (2005), Petrogenesis of Hawaiian postshield lavas: Evidence from Nintoku Seamount, Emperor Seamount Chain, Geochem. Geophys. Geosyst., 6, Q05L09, doi:10.1029/2004GC000875.
  • Sen, G. (1987), Xenoliths associated with the hawaiian hotsopt, in Mantle Xenoliths, edited by P. H. Nixon, pp. 359375, John Wiley, Hoboken, N. J.
  • Sen, G., H.-J. Yang, and M. Ducea (2003), Anomalous isotopes and trace element zoning in plagioclase peridotite xenoliths of Oahu (Hawaii): Implications for the Hawaiian Plume, Earth Planet. Sci. Lett., 207, 2338.
  • Sims, K. W. W., D. J. DePaolo, M. T. Murrell, W. S. Baldridge, S. J. Goldstein, and D. A. Clague (1995), Mechanisms of magma generation beneath Hawaii and mid-ocean ridges: Uranium/thorium and samarium/neodymium isotopic evidence, Science, 267, 508511.
  • Sims, K. W. W., D. J. DePaolo, M. T. Murrell, W. S. Baldridge, S. Goldstein, D. Clague, and M. Jull (1999), Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: Inferences from 238U-230Th-226Ra and 235U-231Pa disequilibria, Geochim. Cosmochim. Acta, 63, 41194138.
  • Sobolev, A. V., A. W. Hofmann, and I. K. Nikogosian (2000), Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas, Nature, 404, 986989.
  • Spiegelman, M., P. B. Kelemen, and E. Aharonov (2001), Causes and consequences of flow organization during melt transport: The reaction infiltration instability in compactible media, J. Geophys. Res., 106, 20612077.
  • Stakes, D. S. (1991), Oxygen and hydrogen isotope compositions of oceanic plutonic rocks: High-temperature defomation and metamorphism of oceanic layer 3, in Stable Isotope Geochemistry: A Tribute to Samuel Epstein, edited by H. P. Taylor Jr., J. R. O'Neil, and I. R. Kaplan, pp. 7790, Geochem. Soc., San Antonio, Tex.
  • Staudigel, H., A. Zindler, S. R. Hart, T. Leslie, C. Y. Chen, and D. A. Clague (1984), The isotope systematics of a juvenile intraplate volcano: Pb, Nd, and Sr isotope ratios of basalts from Loihi Seamount, Hawaii, Earth Planet. Sci. Lett., 69, 1329.
  • Stille, P., D. M. Unruh, and M. Tatsumoto (1986), Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source, Geochim. Cosmochim. Acta, 50, 23032319.
  • Stracke, A., V. J. M. Salters, and K. W. W. Sims (1999), Assessing the presence of garnet-pyroxenite in the mantle sources of basalts through combined hafnium-neodymium-thorium isotope systematics, Geochem. Geophys. Geosyst., 1(1), doi:10.1029/1999GC000013.
  • Stracke, A., M. Bizimis, and V. J. M. Salters (2003), Recycling oceanic crust: Quantitative constraints, Geochem. Geophys. Geosyst., 4(3), 8003, doi:10.1029/2001GC000223.
  • Sun, S.-s., and W. F. McDonough (1989), Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Magmatism in the Ocean Basins, edited by A. D. Saunders, and M. J. Norry, Geol. Soc. Spec. Publ., 42, 313345.
  • Takahashi, E. (1986), Melting of a dry peridotite KLB-1 up to 14 GPa: Implications on the origin of peridotitic upper mantle, J. Geophys. Res., 91, 93679382.
  • Takahashi, E., and K. Nakajima (2002), Melting process in the Hawaiian Plume: An experimental study, in Hawaiian Volcanoes: Deep Underwater Perspectives, Geophys. Monogr. Ser., vol. 128, edited by E. Takahashi et al., pp. 403418, AGU, Washington, D. C.
  • Thompson, R. N. (1974), Primary basalts and magma genesis; I, Skye, north-west Scotland, Contrib. Mineral. Petrol., 45, 317341.
  • Thompson, R. N. (1975), Primary basalts and magma genesis; II, Snake River Plain, Idaho, U.S.A. Contrib. Mineral. Petrol., 52, 213232.
  • Todt, W., R. A. Cliff, A. Hanser, and A. W. Hofmann (1996), Evaluation of a 202Pb-205Pb double spike for high-precision lead isotope analysis, in Earth Processes: Reading the Isotopic Code, Geophys. Monogr. Ser., vol. 95, edited by A. Basu, and S. Hart, pp. 429437, AGU, Washington, D. C.
  • van Keken, P., and S. Zhong (1999), Mixing in a 3D spherical model of present-day mantle convection, Earth Planet. Sci. Lett., 171, 533547.
  • Wagner, T. P., and T. L. Grove (1998), Melt-harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea Volcano, Hawaii, Contrib. Mineral. Petrol., 131, 112.
  • Wagner, T. P., D. A. Clague, E. H. Hauri, and T. L. Grove (1998), Trace element abundances of high-MgO glasses from Kilauea, Mauna Loa and Haleakala volcanoes, Hawaii, Contrib. Mineral. Petrol., 131, 1321.
  • West, H. B., and W. P. Leeman (1987), Isotopic evolution of lavas from Haleakala Crater, Hawaii, Earth Planet. Sci. Lett., 84, 211225.
  • West, H. B., D. C. Gerlach, W. P. Leeman, and M. O. Garcia (1987), Isotopic constraints on the origin of Hawaiian lavas from the Maui Volcanic Complex, Hawaii, Nature, 330, 216220.
  • West, H. B., M. O. Garcia, D. C. Gerlach, and J. Romano (1992), Geochemistry of tholeiites from Lanai, Hawaii, Contrib. Mineral. Petrol., 112, 520542.
  • White, W. M., F. Albarède, and P. Télouk (2000), High-precision analysis of Pb isotope ratios by multi-collector ICP-MS, Chem. Geol., 167, 257270.
  • Wright, T. L. (1984), Origin of Hawaiin tholeiite: A metasomatic model, J. Geophys. Res., 89, 32333252.
  • Xu, G., F. A. Frey, D. A. Clague, D. Weis, and M. H. Beeson (2005), East Molokai and other Kea-trend volcanoes: Magmatic processes and sources as they migrate away from the Hawaiian hot spot, Geochem. Geophys. Geosyst., 6, Q05008, doi:10.1029/2004GC000830.
  • Yaxley, G. M., and D. H. Green (1998), Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust, Schweiz. Mineral. Petrogr. Mitt., 78, 243255.
  • Zimmer, M., A. Kröner, K. P. Jochum, T. Reischmann, and W. Todt (1995), The Gabal Gerf Complex: A Precambrian N-MORB ophiolite in the Nubian Shield, NE Africa, Chem. Geol., 123, 2951.