SEARCH

SEARCH BY CITATION

References

  • Andruleit, H., and K.-H. Baumann (1998), History of the Last Deglaciation and Holocene in the Nordic seas as revealed by coccolithophore assemblages, Mar. Micropaleontol., 35, 179201.
  • Barker, S., and H. Elderfield (2002), Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2, Science, 297, 833836.
  • Bijma, J., H. J. Spero, and D. W. Lea (1999), Reassessing foraminiferal stable isotope geochemistry: Impact of the oceanic carbonate system (Experimental results), in Use of Proxies in Paleoceanography: Examples From the South Atlantic, pp. 489521, edited by G. Fischer, and G. Wefer, Springer, New York.
  • Bradshaw, A. L., P. G. Brewer, D. K. Shaffer, and R. T. Williams (1981), Measurements of total carbon dioxide and alkalinity by potentiometrc titration in the GEOSECS program, Earth Planet. Sci. Lett., 55, 99115.
  • Brand, L. E. (1981), Genetic variability in reproduction rates in marine phytoplankton populations, Evolution, 38, 11171127.
  • Brand, L. E. (1982), Genetic variability and spatial patterns of genetic differentiation in the reproductive rates of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica, Limnol. Oceanogr., 27, 236245.
  • Brand, L. E. (1984), The salinity tolerance of forty-six marine phytoplankton isolates, Estuarine Coastal Shelf Sci., 18, 543556.
  • Brewer, P. G., A. L. Bradshaw, and R. T. Williams (1986), Measurement of total carbon dioxide and alkalinity in the north Atlantic Ocean in 1981, in The Changing Carbon Cycle—A Global Analysis, edited by J. R. Trabalka, and D. E. Reichle, pp. 358381, Springer, New York.
  • Broerse, A. T. C., P. Ziveri, and S. Honjo (2000), Coccolithophore (-CaCO3) flux in the Sea of Okhotsk: Seasonality, settling and alteration processes, Mar. Micropaleontol., 39, 179200.
  • Brownlee, C., and A. Taylor (2004), Calcification in coccolithophores: A cellular perspective, in Coccolithophores — From Molecular Processes to Global Impact, edited by H. R. Thierstein, and J. R. Young, pp. 3149, Springer, New York.
  • Conte, M., A. Thompson, D. Lesley, and R. P. Harris (1998), Genetic and physiological influences on the alkenone/alkenonate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica, Geochim. Cosmochim. Acta, 62, 5168.
  • Delille, B., et al. (2005), Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi, Global Biogeochem. Cycles, 19, GB2023, doi:10.1029/2004GB002318.
  • Demicco, R. V., T. K. Lowenstein, and L. A. Hardie (2003), Atmospheric pCO2 since 60 Ma from records of seawater pH, calcium, and primary carbonate mineralogy, Geology, 31, 793796.
  • Dickson, A. G., and F. J. Millero (1987), A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep Sea Res., Part A, 34, 17331743.
  • Erez, J. (2003), The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies, in Biomineralization, edited by P. Dove, J. J. De Yoreo, and S. Weiner, pp. 115149, Mineral. Soc. of Am., Washington, D. C.
  • Falkowski, P. G., et al. (2000), The global carbon cycle: A test of our knowledge of Earth as a system, Science, 290, 291296.
  • Feely, R. A., C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and F. J. Millero (2004), Impact of anthropogenic CO2 on the CaCO3 system in the oceans, Science, 305, 362366.
  • Felle, H. H. (1994), The H+/Cl− symporter in root-hair cells of Sinapis alba (an electrophysiological study using ion-selective microelectrodes), Plant Physiol., 106, 11311136.
  • Geisen, M., J. R. Young, I. Probert, A. G. Sáez, K.-H. Baumann, J. Bollmann, L. Cros, C. de Vargas, L. K. Medlin, and C. Sprengel (2004), Species level variation in coccolithophores, in Coccolithophores — From Molecular Processes to Global Impact, edited by H. R. Thierstein, and J. R. Young, pp. 327366, Springer, New York.
  • Gran, G. (1952), Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid, Oceanol. Acta, 5, 209218.
  • Guillard, R. R. L., and J. H. Ryther (1962), Studies of marine planktonic diatoms, I, Cyclotella nanna (Hustedt) and Detonula convervacea (Cleve), Can. J. Microbiol., 8, 229239.
  • Hay, W. W. (2004), Carbonate fluxes and calcareous phytoplankton, in Coccolithophores — From Molecular Processes to Global Impact, edited by H. R. Thierstein, and J. R. Young, pp. 509528, Springer, New York.
  • Henriksen, K., S. L. S. Stipp, J. Young, and M. E. Marsh (2004), Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function, Am. Mineral., 89, 15861596.
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, X. Dai, K. Maskell, and C. A. Johnson (2001), Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel of Climate Change, Cambridge Univ. Press, New York.
  • Indermühle, A., et al. (1999), Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica, Nature, 398, 121126.
  • Kleijne, A. (1990), Distribution and malformation of extant calcareous nannoplankton in the Indonesian Seas, Mar. Micropaleontol., 16, 293316.
  • Kleypas, J. A., R. W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon, and B. N. Opdyke (1999), Geochemical consequences of increased atmospheric carbon dioxide on coral reefs, Science, 284, 118120.
  • Lewis, E., and D. W. R. Wallace (1998), Program developed for CO2 system calculations, Carbon Dioxide Inf. and Anal. Cent., Rep. ORNL/CDIAC-105, Oak Ridge Natl. Lab., U.S. Dep. of Energy, Oak Ridge, Tenn.
  • Marsh, M. E. (1994), Polyanion-mediated mineralization—Assembly and reorganization of acidic polysaccharides in the Golgi system of a coccolithophorid alga during mineral deposition, Protoplasma, 177, 108122.
  • Medlin, L. K., G. L. A. Barker, J. C. Green, D. E. Hayes, D. Marie, S. Wrieden, and D. Vaulot (1996), Genetic characterization of Emiliania huxleyi (Haptophyta), J. Mar. Syst., 9, 1332.
  • Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkovicz (1973), Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897907.
  • Niebler, H.-S., H. W. Arz, B. Donner, S. Mulitza, J. Pätzold, and G. Wefer (2003), Sea surface temperatures in the equatorial and South Atlantic Ocean during the Last Glacial Maximum (23–19 ka), Paleoceanography, 18(3), 1069, doi:10.1029/2003PA000902.
  • Nimer, N. A., C. Brownlee, and M. J. Merrett (1994), Carbon dioxide availability, intracellular pH and growth rate of the coccolithophore Emiliania huxleyi, Mar. Ecol. Prog. Ser., 109, 257262.
  • Odijk, T. (1977), Polyelectrolytes near the rod limit, J. Polymer Sci. Polymer Phys. Ed., 15, 477483.
  • Paasche, E. (2002), A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions, Phycologia, 40, 503529.
  • Pearson, P. N., and M. R. Palmer (2000), Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, 406, 695699.
  • Perch-Nielsen, K. (1985), Cenozoic calcareous nannofossils, in Plankton Stratigraphy, edited by H. M. Bolli, J. B. Saunders, and K. Perch-Nielsen, pp. 427555, Cambridge Univ. Press, New York.
  • Petit, J. R., et al. (1999), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429436.
  • Pflaumann, U., et al. (2003), Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000, Paleoceanography, 18(3), 1065, doi:10.1029/2002PA000774.
  • Retallack, G. J. (2001), A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles, Nature, 411, 287290.
  • Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe, and F. M. M. Morel (2000), Reduced calcification of marine plankton in response to increased atmospheric CO2, Nature, 407, 364367.
  • Sabine, C. L., et al. (2004), The oceanic sink for anthropogenic CO2, Science, 305, 367371.
  • Skolnick, J., and M. Fixman (1977), Electrostatic persistence length of a wormlike polyelectrolyte, Macromolecules, 10, 944948.
  • Stoll, M. H. C., K. Bakker, G. H. Nobbe, and R. R. Haese (2001), Continuous-flow analysis of dissolved inorganic carbon content in seawater, Anal. Chem., 73, 41114116.
  • Stolte, W., G. W. Kraay, A. A. M. Noordeloos, and R. Riegman (2000), Genetic and physiological variation in pigment composition of Emiliania huxleyi (Prymnesiophyceae) and the potential use of its pigment ratios as a quantitative physiological marker, J. Phycol., 96, 529589.
  • Thoresen, S. S., J. R. Clayton Jr., and S. I. Ahmed (1984), The effect of short-term fluctuations in pH on NO-3 uptake and intracellular constituents in Skeletonema costatum (Grev.) Cleve, J. Exp. Mar. Biol. Ecol., 83, 149157.
  • van Andel, T. H., J. Thiede, J. G. Sclater, and W. W. Hay (1977), Depositional history of the South Atlantic Ocean during the last 125 million years, J. Geol., 85, 651698.
  • Wolf-Gladrow, D. A., U. Riebesell, S. Burkhardt, and J. Bijma (1999), Direct effects of CO2 concentration on growth and isotopic composition of marine plankton, Tellus, Ser. B, 51, 461476.
  • Zondervan, I., B. Rost, and U. Riebesell (2002), Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths, J. Exp. Mar. Biol. Ecol., 272, 5570.