SEARCH

SEARCH BY CITATION

References

  • Alendal, G., and H. Drange (2001), Two-phase, near-field modelling of purposefully released CO2 in the ocean, J. Geophys. Res., 106, 10851096.
  • Aya, I., K. Yamane, and N. Yamada (1992), Stability of clathrate-hydrate of carbon dioxide in highly pressured water, Fundam. Phase Change Freezing Melting Sublimation, Winter Annu. Meet. Am. Soc. Mech. Eng., 215, 1722.
  • Aya, I., K. Yamane, and H. Nariai (1997), Solubility of CO2 and density of CO2 hydrate at 30 MPa, Energy, 22, 263271.
  • Batchelor, G. K. (1987), The stability of a large gas bubble rising through liquid, J. Fluid Mech., 184, 399422.
  • Bozzano, G., and M. Dente (2001), Shape and terminal velocity of single bubble motion: A novel approach, Comput. Chem. Eng., 25, 571576.
  • Brewer, P. G., G. Friederich, E. T. Peltzer, and F. M. Orr (1999), Direct experiments on the ocean disposal of fossil fuel CO2, Science, 284, 943945.
  • Brewer, P. G., E. T. Peltzer, G. Friederich, and G. Rehder (2002), Experimental determination of the fate of rising CO2 droplets in seawater, Environ. Sci. Technol., 36, 54415446.
  • Chen, B., Y. Song, M. Nishio, and M. Akai (2003), Large-eddy simulation of double-plume formation induced by CO2 dissolution in the ocean, Tellus, Ser. B, 55, 723730.
  • Crowe, C., M. Sommerfield, and Y. Tsuji (1998), Multiphase Flows With Droplets and Particles, CRC Press, Boca Raton, Fla.
  • Ely, J. F., W. M. Haynes, and B. C. Bain (1989), Isochoric (p, Vm, T) measurements on CO2 and on (0.982CO2 + 0.01N2) from 250 to 330 K at pressures to 35 MPa, J. Chem. Thermodyn., 21, 879894.
  • Haugan, P. M., and H. Drange (1992), Sequestration of CO2 in the deep ocean by shallow injection, Nature, 357, 318320.
  • Hirai, S., K. Okazaki, N. Araki, H. Yazawa, H. Ito, and K. Hijikata (1996), Transport phenomena of liquid CO2 in pressurized water flow with clathrate-hydrate at the interface, Energy Convers. Manage., 37, 10731078.
  • Mori, Y. H., and T. Mochizuki (1998), Dissolution of liquid CO2 into water at high pressures: A search for the mechanism of dissolution being retarded through hydrate-film formation, Energy Convers. Manage., 39, 567578.
  • Nishikawa, N., M. Ishibashi, H. Ohta, N. Akutsu, M. Tajika, T. Sugitani, R. Hiraoka, H. Kimuro, and T. Shiota, Energy Convers. Manage., 36, 489492, 1995.
  • Ozaki, M. (1999), Annual report of RITE (in Japanese), pp. 286307, Res. Inst. of Innovative Technol. for the Earth, Tsukuba, Japan.
  • Radhakrishnan, R., A. Demurov, H. Herzog, and B. L. Trout (2003), A consistent and verifiable macroscopic model for the dissolution of liquid CO2 in water under hydrate forming conditions, Energy Convers. Manage., 44, 771780.
  • Ranz, W. E., and W. R. Marshall (1952), Evaporation from drops, Chem. Eng. Prog., 48, 141146, 173–180.
  • Rehder, G., P. G. Brewer, E. T. Peltzer, and G. Friederich (2002), Enhanced lifetime of methane bubble streams within the deep ocean, Geophys. Res. Lett., 29(15), 1731, doi:10.1029/2001GL013966.
  • Sato, T., R.-T. Jung, and S. Abe (2000), Direct simulation of droplet flow with mass transfer at interface, J. Fluids Eng., 122, 510516.
  • Schiller, L., and A. Naumann (1933), Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung, Z. Ver. Dtsch. Ing., 77, 318320.
  • Tsouris, C., P. G. Brewer, E. Peltzer, P. Walz, D. Riestenberg, L. Liang, and O. R. West (2004), Hydrate composite particles for ocean carbon sequestration: Field verification, Environ. Sci. Technol., 38, 24702475.