SEARCH

SEARCH BY CITATION

References

  • Bakwin, P. S., P. P. Tans, J. W. C. White, and R. J. Andres (1998), Determination of the isotopic (13C/12C) discrimination by terrestrial biology from a global network of observations, Global Biogeochem. Cycles, 12(3), 555562.
  • Bakwin, P. S., K. J. Davis, C. Yi, S. C. Wofsy, J. W. Munger, and Z. Barcza (2004), Regional carbon dioxide fluxes from mixing ratio data, Tellus, Ser. B, 56, 301311.
  • Bergamaschi, P., R. Hein, M. Heimann, and P. J. Crutzen (2000), Inverse modeling of the global CO cycle: 1. Inversion of CO mixing ratios, J. Geophys. Res., 105(D2), 19091927.
  • Environmental Protection Agency (EPA) (2004), Trends in greenhouse gas emissions and sinks: 1990–2002, in EPA Summary Report GHG Emissions Inventory 2004, Washington, D. C.
  • Geller, L. S., J. W. Elkins, J. M. Lobert, A. D. Clarke, D. F. Hurst, J. H. Butler, and R. C. Myers (1997), Tropospheric SF6: Observed latitudinal distribution and trends, derived emissions and interhemispheric exchange time, Geophys. Res. Lett., 24(6), 675678.
  • Gurney, K. R., et al. (2003), Transcom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information, Tellus, Ser. B, 55, 555579.
  • Levin, I., and B. Kromer (2004), The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003), Radiocarbon, 46(3), 12611272.
  • Levin, I., B. Kromer, M. Schmidt, and H. Sartorius (2003), A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations, Geophys. Res. Lett., 30(23), 2194, doi:10.1029/2003GL018477.
  • Marland, G., T. A. Boden, and R. J. Andres (2003), Global, regional, and national fossil fuel CO2 emissions, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., U. S. Dep. of Energy, Oak Ridge, Tenn.
  • McNichol, A. P., A. R. Gagnon, G. A. Jones, and E. A. Osborne (1992), Illumination of a black box: Analysis of gas composition during graphite target preparation, Radiocarbon, 34(3), 321329.
  • Meijer, H. A. J., H. M. Smid, E. Perez, and M. G. Keizer (1996), Isotopic characterization of anthropogenic CO2 emissions using isotopic and radiocarbon analysis, Phys. Chem. Earth, 21(5–6), 483487.
  • Olivier, J. G. J., and J. J. M. Berdowski (2001), Global emissions sources and sinks, in The Climate System, edited by J. Berdowski, R. Guicherit, and B. Heij, pp. 3378, A. A. Balkema, Brookfield, Vt.
  • Pacala, S. W., et al. (2001), Consistent land and atmosphere based us carbon sink estimates, Science, 292, 23162320.
  • Potosnak, M. J., S. C. Wofsy, A. S. Denning, T. J. Conway, J. W. Munger, and D. H. Barnes (1999), Influence of biotic exchange and combustion sources on atmospheric CO2 concentrations in New England from observations at a forest flux tower, J. Geophys. Res., 104(D8), 95619569.
  • Schnell, R. C., A.-M. Buggle, and R. M. Rosson (Eds.) (2004), Climate monitoring and diagnostics laboratory summary report 2002–2003, NOAA, Boulder, Colo.
  • Stuiver, M., and H. Polach (1977), Discussion: Reporting of 14C data, Radiocarbon, 19(3), 355363.
  • Tans, P. P., J. A. Berry, and R. F. Keeling (1993), Ocean 13C/12C observations: A new window on ocean CO2 uptake, Global Biogeochem. Cycles, 7(2), 353368.
  • Zhao, C., P. P. Tans, and K. W. Thoning (1997), A high precision manometric system for absolute calibrations of CO2 in dry air, J. Geophys. Res., 102(D5), 58855894.
  • Zondervan, A., and H. A. J. Meijer (1996), Isotopic characterization of CO2 sources during regional pollution events using isotopic and radiocarbon analysis, Tellus, Ser. B, 48, 601612.