• Bentamy, A., N. Grima, and Y. Quilfen (1998), Validation of the gridded weekly and monthly wind fields calculated from ERS-1 scatterometer wind observations, Global Atmos. Ocean Syst., 6, 373396.
  • Boutin, J., and J. Etcheto (1996), Consistency of Geosat, SSM/I and ERS1 global surface wind speeds: Comparison with in-situ data, J. Atmos. Oceanic Technol., 13, 183197.
  • Broecker, W. S., T.-H. Peng, G. Östlund, and M. Stuiver (1985), The distribution of bomb radiocarbon in the ocean, J. Geophys. Res., 90, 69536970.
  • Etheridge, D., L. Steele, R. Langenfelds, R. Francey, J.-M. Barnola, and V. Morgan (1998), Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge, Tenn.
  • Gibson, J. K., K. Kallberg, S. Uppala, A. Hernandez, A. Nomura, and E. Sarrano (1997), ERA description, ECMWF Re-anal. Proj. Rep. Ser. 1, Eur. Cent. for Medium-Range Weather Forecasts, Reading, U.K.
  • Hesshaimer, V. (1997), Tracing the global carbon cycle with bomb radiocarbon, Ph.D. thesis, Univ. of Heidelberg, Heidelberg, Germany.
  • Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437471.
  • Keeling, C. D., and T. P. Whorf (2004), Atmospheric CO2 records from sites in the SIO air sampling network, in Trends: A Compendium of Data on Global Change, arbon Dioxide Inf. Anal. Cent., Oak Ridge, Tenn.
  • Key, R. M., A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J. Millero, C. Mordy, and T.-H. Peng (2004), A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.
  • Liss, P. S., and L. Merlivat (1986), Air-sea gas exchange rates: Introduction and synthesis, in The Role of Air-Sea Exchange in Geochemical Cycling, edited by P. B. Ménard, pp. 113128, Springer, New York.
  • Lungu, T. (2001), QuickScat science data product user's manual, Tech. Rep. D-18053, Jet Propul. Lab., Pasadena, Calif.
  • Naegler, T. (2005), Simulating bomb radiocarbon: Consequences for the global carbon cycle, Ph.D. thesis, Univ. of Heidelberg, Heidelberg, Germany.
  • Naegler, T., and I. Levin (2006), Closing the global radiocarbon budget 1945–2005, J. Geophys. Res., doi:10.1029/2005JD006758, in press.
  • Nightingale, P. D., G. Malin, C. S. Law, A. J. Watson, P. S. Liss, M. I. Liddicoat, J. Boutin, and R. C. Upstill-Doddard (2000), In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers, Global Biogeochem. Cycles, 14, 373387.
  • Peacock, S. (2004), Debate over the ocean bomb radiocarbon sink: Closing the gap, Global Biogeochem. Cycles, 18, GB2022, doi:10.1029/2003GB002211.
  • Rodgers, K. B., O. Aumont, G. Madec, C. Menkes, B. Blanke, P. Monfray, J. C. Orr, and D. P. Schrag (2004), Radiocarbon as a thermocline proxy for the eastern equatorial Pacific, Geophys. Res. Lett., 31, L14314, doi:10.1029/2004GL019764.
  • Takahashi, T., et al. (2002), Global sea-air CO2 flux based on climatological surface ocean pCO2 and seasonal biological and temperature effects, Deep Sea Res., Part II, 49, 16011622.
  • Wanninkhof, R. (1992), Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 73737382.
  • Wanninkhof, R. A., and W. McGillis (1999), A cubic relationship between gas transfer and wind speed, Geophys. Res. Lett., 26, 18891893.
  • Wanninkhof, R., S. Doney, T. Takahashi, and W. McGillis (2002), The effect of using time-averaged winds on regional air-sea CO2 fluxes, in Gas Transfer at Water Surfaces, Geophys. Monogr. Ser., vol. 127, edited by M. Donelan et al., pp. 351356, AGU, Washington, D.C.