Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis



[1] In this work we present a simple technique to estimate the medium-scale traveling ionospheric disturbances (MSTIDs) characteristics (such as occurrence, velocity, vertical propagation) with periods lower than 20 min and its application to a set of GPS data both temporally and spatially representative (near one solar cycle and four local networks in the Northern and Southern Hemispheres, respectively). Some of the main results presented in this paper are the MSTIDs which occur at daytime in local winter and nighttime in local summer, related to the solar terminator and modulated by the solar cycle. They present equatorward (from ∼100 to 400 m/s) and westward (∼50 to 200 m/s) horizontal propagation velocities, respectively. The corresponding periods are compatible (higher) with the theoretical prediction, which is given by the neutral atmosphere buoyancy period associated with the Brunt-Väisälä frequency (about 600 s). Moreover, higher TIDs productivity is mainly associated with the downward vertical propagation. Finally, the results obtained in this study suggest the possibility of developing future MSTID models to mitigate its impact in applications like precise satellite navigation.