SEARCH

SEARCH BY CITATION

References

  • Albrecht, B. A. (1989), Aerosol, cloud microphysics, and fractional cloudiness, Science, 245, 12271230.
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias (2003), Smoking rain clouds over the Amazon, Science, 303, 13371342.
  • Bergeron, T. (1935), On the physics of clouds and precipitation, paper presented at 5th IUGG Assembly, Int. Union of Geod. and Geophys., Lisbon.
  • Bigg, E. K. (1953a), The supercooling of water, Proc. Phys. Soc. London, 66, 688694.
  • Bigg, E. K. (1953b), The formation of atmospheric ice crystals by the freezing of droplets, Q. J. R. Meteorol. Soc., 79, 510519.
  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley Jr., J. E. Hansen, and D. J. Hoffman (1992), Climate forcing by anthropogenic aerosols, Science, 255, 423430.
  • Coakley, J. A.Jr., R. L. Bernstein, and P. A. Durkee (1987), Effect of ship-stack effluents on cloud reflectivity, Science, 237, 10201022.
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. Mulvihill (1986), Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall, J. Clim. Appl. Meteorol., 25, 16581680.
  • DeMott, P. J., and D. C. Rogers (1990), Freezing nucleation rates of dilute solution droplets measured between −30 and −40°C in laboratory simulations of natural clouds, J. Atmos. Sci., 47, 10561064.
  • Ekman, A. M. L., C. Wang, J. Wilson, and J. Ström (2004), Explicit simulations of aerosol physics in a cloud-resolving model: A sensitivity study based on an observed convective cloud, Atmos. Chem. Phys., 4, 773791.
  • Feingold, G., S. Tzivion, and Z. Levin (1988), The evolution of raindrop spectra: Part I. Stochastic collection and breakup, J. Atmos. Sci., 45, 33873399.
  • Ferek, R. J., et al. (2000), Drizzle suppression in ship tracks, J. Atmos. Sci., 57, 27072728.
  • Findeisen, W. (1938), Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung, Meteorol. Z., 55, 121133.
  • Fridlind, A. M., et al. (2004), Evidence for the predominance of mid-tropospheric aerosols as subtropical anvil cloud nuclei, Science, 304, 718722.
  • Gerber, H. E. (1976), Relationship of size and activity for AgI smoke particles, J. Atmos. Sci., 33, 667677.
  • Gorbunov, B., A. Baklanov, N. Kakutkina, H. L. Windsor, and R. Toumi (2001), Ice nucleation on soot particles, J. Aerosol Sci., 32, 199215.
  • Graf, H.-F. (2004), The complex interaction of aerosols and clouds, Science, 203, 13091311.
  • Hobbs, P. V., D. A. Bowdle, and L. F. Radke (1985), Particles in the lower troposphere over the high plains of the United States: Part I. Size distributions, elemental composition and morphologies, J. Clim. Appl. Meteorol., 24, 13441356.
  • Intergovernmental Panel on Climate Change (IPCC) (2001), Climate Change 2001: The Scientific Basis: Summary for Policymakers and Technical Summary of the Working Group I Report, 20 pp., edited by J. T. Houghton et al., Cambridge Univ. Press, New York.
  • Khain, A., and A. Pokrovsky (2004), A simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. part II: Sensitivity study, J. Atmos. Sci., 61, 29833001.
  • Khain, A. P., and I. Sednev (1996), Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model, Atmos. Res., 43, 77110.
  • Khain, A. P., A. Pokrovsky, and I. Sednev (1999), Some effects of cloud-aerosol interaction on cloud microphysics structure and precipitation formation: Numerical experiments with a spectral microphysics cloud ensemble model, Atmos. Res., 52, 195220.
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. T. J. Phillips (2004), Simulation of effects of atmospheric aerosols on deep turbulent convective clouds by using a spectral microphysics mixed-phase cumulus cloud model. part 1: Model description and possible applications, J. Atmos. Sci., 61, 29632982.
  • King, M. D., L. F. Radke, and P. V. Hobbs (1993), Optical properties of marine stratocumulus clouds modified by ships, J. Geophys. Res., 98, 27292739.
  • Kollias, P., B. A. Albrecht, R. Lhermitte, and A. Savtchenko (2001), Radar observations of updrafts, downdrafts, and turbulence in fair-weather cumuli, J. Atmos. Sci., 58, 17501766.
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton (1992), New primary ice-nucleation parameterizations in an explicit cloud model, J. Appl. Meteorol., 31, 708721.
  • Murry, F. W. (1970), Numerical models of a tropical cumulus cloud with bilateral and axial symmetry, Mon. Weather Rev., 98, 1428.
  • Ogura, Y. (1963), The evolution of a moist convective element in a shallow, conditionally unstable atmosphere: A numerical calculation, J. Atmos. Sci., 20, 407424.
  • Orville, H. D., and F. J. Kopp (1977), Numerical simulation of the life history of a hailstorm, J. Atmos. Sci., 34, 15961618.
  • Phillips, V. T. J., T. W. Choularton, A. M. Blyth, and J. Latham (2002), The influence of aerosol concentrations on the glaciation and precipitation of a cumulus cloud, Q. J. R. Meteorol. Soc., 128, 951971.
  • Pitter, R. L., and H. R. Pruppacher (1973), A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air, Q. J. R. Meteorol. Soc., 99, 540550.
  • Radke, L. F., J. A. Coakley Jr., and M. D. King (1989), Direct and remote sensing observations of the effects of ships on clouds, Science, 246, 11461149.
  • Ramanathan, V., and A. M. Vogelmann (1997), Greenhouse effect, atmospheric solar absorption and the Earth's radiation budget: From the Arrhenius-Langley era to the 1999s, in The Legacy of Svante Arrhenius: Understanding the Greenhouse Effect, edited by H. Rodhe, and R. Charlson, pp. 85103, R. Swed. Acad. of Sci., Stockholm Univ., Stockholm.
  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld (2001), Aerosols, climate, and the hydrological cycle, Science, 294, 21192124.
  • Reisin, T., Z. Levin, and S. Tzivion (1996), Rain production in convective clouds as simulated in as axisymmetric model with detailed microphysics. part II: Effects of varying drops and ice initiation, J. Atmos. Sci., 53, 18151837.
  • Reisner, J., R. M. Rasmussen, and R. Bruintjes (1998), Explicit forecasting of supercooled liquid water in winter storms using the MM5 model, Q. J. R. Meteorol. Soc., 124, 10711107.
  • Respondek, P. S., R. R. Alheit, and H. R. Pruppacher (1995), A theoretical study of the wet removal of atmospheric pollutants, V. The uptake, redistribution, and deposition of (NH4)2SO4 by a convective cloud containing ice, J. Atmos. Sci., 52, 21212132.
  • Rosenfeld, D. (2000), Suppression of rain and snow by urban and industrial air pollution, Science, 287, 17931796.
  • Rosenfeld, D., and W. L. Woodley (2000), Convective clouds with sustained highly supercooled liquid water down to −37.5°C, Nature, 405, 440442.
  • Soong, S.-T., and Y. Ogura (1973), A comparison between axi-symmetric and slab-symmetric cumulus cloud models, J. Atmos. Sci., 30, 879893.
  • Toon, O. B. (2000), How pollution suppresses rain, Science, 287, 17631765.
  • Twomey, S. (1977), Atmospheric Aerosols, 302 pp., Elsevier, New York.
  • Twomey, S. (1991), Aerosols, clouds and radiation, Atmos. Environ., Part A, 25, 24352442.
  • Tzivion, S., G. Feingold, and Z. Levin (1987), An efficient numerical solution to the stochastic collection equation, J. Atmos. Sci., 44, 31393149.
  • Tzivion, S., G. Feingold, and Z. Levin (1989), The evolution of raindrop spectra: Part II. Collisional collection/breakup and evaporation in a rainshaft, J. Atmos. Sci., 46, 33123327.
  • Vali, G. (1994), Freezing rate due to heterogeneous nucleation, J. Atmos. Sci., 51, 18431856.
  • Wegener, A. (1911), Thermodynamik der Atmosphäre, Barth, Leipzig, Poland.
  • Wilhelmson, R., and Y. Ogura (1972), The pressure perturbation and the numerical modeling of a cloud, J. Atmos. Sci., 29, 12951307.
  • Wisner, C., H. D. Orville, and C. Myers (1972), A numerical model of a hail-bearing cloud, J. Atmos. Sci., 29, 11601181.
  • Yin, Y., Z. Levin, T. Reisin, and S. Tzivion (2000), The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study, Atmos. Res., 53, 91116.
  • Yin, Y., K. S. Carslaw, and D. J. Parker (2002), Redistribution of trace gases by convective clouds–mixed-phase processes, Atmos. Chem. Phys., 2, 293306.
  • Yin, Y., K. S. Carslaw, and G. Feingold (2005), Vertical transport and processing of aerosols in a mixed-phase convective cloud and the feedback on cloud development, Q. J. R. Meteorol. Soc., 131, 221246.