SEARCH

SEARCH BY CITATION

References

  • Bergamaschi, P., R. Hein, M. Heinmann, and P. Crutzen (2000), Inverse modeling of the global CO cycle: 1. Inversion of CO mixing ratio, J. Geophys. Res., 105(D2), 19091927.
  • Blond, N. (2002), Assimilation de données photochimiques et prévisions de la pollution troposphérique, Ph.D. thesis, École Polytech., Palaiseau, France.
  • Bousquet, P., P. Ciais, P. Peylin, M. Ramonet, and P. Monfray (1999), Inverse modeling of annual atmospheric CO2 sources and sinks: 1. Method and control inversion, J. Geophys. Res., 104(D21), 26,16126,178.
  • Boutahar, J., S. Lacour, V. Mallet, D. Quélo, Y. Roustan, and B. Sportisse (2004), Development and validation of a fully modular platform for numerical modelling of air pollution: Polair, Int. J. Environ. Pollut., 22(1/2), 1728.
  • Byrd, H., P. Lu, J. Nocedal, and C. Zhu (1995), A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16(5), 11901208.
  • Chang, J., R. Brost, I. Isaken, S. Madronich, P. Middleton, W. Stockwell, and C. Walcek (1987), A three-dimensional eulerian acid deposition model: Physical concepts and formulation, J. Geophys. Res., 92(D12), 14,68114,700.
  • Chang, M. E., D. E. Hartley, C. Cardelino, D. Haas-Laursen, and W.-L. Chang (1997), On using inverse methods for resolving emissions with large spatial inhomogeneities, J. Geophys. Res., 102(D13), 16,02316,036.
  • Elbern, H., and H. Schmidt (2001), Ozone episode analysis by four dimensional variational chemistry data assimilation, J. Geophys. Res., 106(D4), 35693590.
  • Elbern, H., H. Schmidt, O. Talagrand, and E. Ebel (2000), 4D variational data assimilation with an adjoint air quality model for emission analysis, Environ. Modell. Software, 15, 539548.
  • Faure, C., and Y. Papegay (1998), Odyssée user's guide, version 1.7, Tech. Rep. RT-0224, Inst. Natl. de Rech. en Inf. et en Autom., Sophia Antipolis, France.
  • Hanna, S. R., Z. Lu, H. C. Frey, N. Wheeler, J. Vukovich, S. Arunachalam, M. Fernau, and D. A. Hansen (2001), Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain, Atmos. Environ., 35(5), 891903.
  • Horowitz, L. W., et al. (2003), A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res., 108(D24), 4784, doi:10.1029/2002JD002853.
  • Hourdin, F., and J.-P. Issartel (2000), Sub-surface nuclear tests monitoring through the CTBT 133Xe network, Geophys. Res. Lett., 27, 22452248.
  • Kaminski, T. (1998), On the benefit of the adjoint technique for inversion of the atmospheric transport employing carbon dioxide as an example of a passive tracer, Ph.D. thesis, Univ. Hamburg, Hamburg, Germany.
  • Le Dimet, F.-X., I. Navon, and D. Daescu (2002), Second-order information in data assimilation, Mon. Weather Rev., 130, 629648.
  • Louis, J.-F. (1979), metric model of vertical eddy fluxes in the atmosphere, Boundary Layer Meteorol., 17, 187202.
  • Madronich, S. (1987), Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds, J. Geophys. Res., 92(D8), 97409752.
  • Mallet, V., and B. Sportisse (2004), 3-D chemistry-transport model Polair: Numerical issues, validation and automatic-differentiation strategy, Atmos. Chem. Phys. Discuss., 4, 13711392.
  • Mallet, V., and B. Sportisse (2005), Data processing and parameterizations in atmospheric chemistry and physics: The AtmoData library, Tech. Rep. CEREA 2005-12, Cent. d'Enseignement et de Rech. en Environ. Atmos., Marne-la-Valle, France.
  • Mallet, V., D. Quélo, and B. Sportisse (2005), Software architecture of an ideal modeling platform in air quality: A first step: Polyphemus, Tech. Rep. CEREA 2005-11, Cent. d'Enseignement et de Rech. en Environ. Atmos., Marne-la-Valle, France.
  • Mendoza-Dominguez, A., and A. Russell (2001), Estimation of emission adjustments from the application of four-dimensional data assimilation to photochemical air quality modeling, Atmos. Environ., 35, 28792894.
  • Menut, L. (2003), Adjoint modeling for atmospheric pollution process sensitivity at regional scale, J. Geophys. Res., 108(D17), 8562, doi:10.1029/2002JD002549.
  • Middleton, P., W. R. Stockwell, and W. P. L. Carter (1990), Aggregation and analysis of volatile organic compound emissions for regional modeling, Atmos. Environ., Part A, 24(5), 11071133.
  • Quélo, D. (2004), Simulation numérique et assimilation de données variationnelle pour la dispersion atmosphérique de polluants, Ph.D. thesis, École Natl. des Ponts et Chaussées, Champs-sur-Marne, France.
  • Sandu, A., F. Potra, G. Carmichael, and V. Damian (1996), Efficient implementation of fully implicit methods for atmospheric chemical kinetics, J. Comput. Phys., 129, 101110.
  • Segers, A. (2002), Data assimilation in atmospheric chemistry models using Kalman filtering, Ph.D. thesis, Tech. Univ. Delft, Delft, Netherlands.
  • Simpson, D., et al. (1999), Inventorying emissions from nature in Europe, J. Geophys. Res., 104(D7), 81138152.
  • Sportisse, B., and D. Quélo (2003), Data assimilation and inverse modeling of atmospheric chemistry, Proc. Indian Natl. Sci. Acad., Part A Phys. Sci., 69.
  • Stockwell, W. R., F. Kirchner, M. Kuhn, and S. Seefeld (1997), A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res., 102(D22), 25,84725,879.
  • van Loon, M., P. Builtjes, and A. Segers (2000), Data assimilation of ozone in the atmospheric transport chemistry model LOTOS, Environ. Modell. Software, 15, 603609.
  • Verwer, J., W. Hundsdorfer, and J. Blom (1998), Numerical time integration for air pollution models, paper presented at International Conference on Air Pollution Modelling and Simulation: APMS'98, École Natl. des Ponts et Chaussées, Paris.
  • Wesely, M. L. (1989), Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 23, 12931304.