SEARCH

SEARCH BY CITATION

References

  • Bakwin, P. S., P. P. Tans, C. Zhao, W. Ussler III, and E. Quesnell (1995), Measurements of carbon dioxide on a very tall tower, Tellus, Ser. B, 47, 535549.
  • Bernhofer, C. (2003), Tharandt, The Euroflux dataset 2000, in: Fluxes of Carbon, Water and Energy of European Forests, edited by R. Valentini, 270 pp, Springer, New York.
  • Bousquet, P., P. Peylin, P. Ciais, C. Le Quéré, P. Friedlingstein, and P. P. Tans (2000), Regional changes in carbon dioxide fluxes of land and oceans since 1980, Science, 290, 13421346.
  • Chevillard, A., et al. (2002a), Transport of 222Rn using the regional model REMO: A detailed comparison with measurements over Europe, Tellus, Ser. B, 54, 850871.
  • Chevillard, A., U. Karstens, P. Ciais, S. Lafont, and M. Heimann (2002b), Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO, Tellus, Ser. B, 54, 872894.
  • Ciaiset al. (1999), AEROCARB: Airborne European Regional Observations of the Carbon Balance, Cent. Natl. de la Recherche Sci., Paris. (Available at http://www.aerocarb.cnrs-gif.fr/).
  • Conway, T. J., P. P. Tans, L. W. Waterman, K. W. Thoning, D. R. Kitzis, K. A. Masarie, and N. Zhang (1994), Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network, J. Geophys. Res., 99(D11), 22,83122,855.
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell (2000), Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184187.
  • Friedlingstein, P., L. Bopp, P. Ciais, J.-L. Dufresne, L. Fairhead, H. LeTreut, P. Monfray, and J. Orr (2001), Positive feedback between future climate change and the carbon cycle, Geophys. Res. Lett., 28, 15431546.
  • Geels, C., et al. (2006), Comparing atmospheric transport models for future regional inversions over Europe. Part 1: Mapping the CO2 atmospheric signals, Atmos. Chem. Phys. Discuss., 6, 37093756.
  • Gerbig, C., J. C. Lin, S. C. Wofsy, B. C. Daube, A. E. Andrews, B. B. Stephens, P. S. Bakwin, and C. A. Grainger (2003), Towards constraining regional scale fluxes of CO2 with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms, J. Geophys. Res., 108(D24), 4756, doi:10.1029/2002JD003018.
  • Gloor, M., P. Bakwin, D. Hurst, L. Lock, R. Draxler, and P. Tans (2001), What is the footprint of a tall tower? J. Geophys. Res., 106(D16), 17,83117,840.
  • Grell, G. (1993), A prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Weather Rev., 121, 764787.
  • Grell, G., J. Dudhia, and D. Stauffer (1993), A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5), NCAR/TN-398+STR, Natl. Cent. for Atmos. Res., Boulder, Colo.
  • Haszpra, L., Z. Barcza, P. S. Bakwin, B. W. Berger, K. J. Davis, and T. Weidinger (2001), Measuring system for the long-term monitoring of biosphere/atmosphere exchange of carbon dioxide, J. Geophys. Res., 106(D3), 30573070.
  • Heimann, M., and S. Körner (2003), The global atmospheric tracer model TM3, Tech. Rep. 5, 131 pp., Max-Planck-Inst. für Biogeochem., Jena, Germany.
  • Heimann, M., et al. (2001), TCOS-Siberia, Terrestrial Carbon Observation System Siberia, EU-Proj. EVK2-CT-2001-00131, Max-Planck-Inst. für Biogeochem., Jena, Germany. (Available at http://www.bgc-jena.mpg.de/public/carboeur/web_TCOS/).
  • Hess, P. G., S. Flocke, J.-F. Lamarque, M. C. Barth, and S. Madronich (2000), Episodic modeling of the chemical structure of the troposphere as revealed during the spring MLOPEX 2 intensive, J. Geophys. Res., 105(D22), 26,80926,839.
  • Holtslag, A. A. M., and B. A. Boville (1993), Local versus nonlocal boundary-layer diffusion in a global climate model, J. Clim., 6, 18251842.
  • Jacob, D., and R. Podzun (1997), Sensitivity Studies with the Regional Climate Model REMO, Meteorol. Atmos. Phys., 63, 119129.
  • Jacob, D., et al. (2001), A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period, Meteorol. Atmos. Phys., 77, 1943.
  • Karstens, U., R. Nolte-Holube, and B. Rockel (1996), Calculation of the water budget over the Baltic Sea Catchment Area using the Regional Forecast Model REMO for June 1993, Tellus, Ser. A, 48, 684692.
  • Keeling, C. D., S. C. Piper, and M. Heimann (1989), A three dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations, in Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr. Ser., vol. 55, edited by D. H. Peterson, pp. 305363, AGU, Washington, D. C.
  • Kjellström, E., K. Holmén, K. Eneroth, and M. Enghardt (2002), Summertime Siberian CO2 simulations with the regional transport model MATCH: A feasibility study of carbon uptake calculations from EUROSIB data, Tellus, Ser. B, 54, 834849.
  • Lafont, S., L. Kergoat, G. Dedieu, A. Chevillard, E. Kjellström, U. Karstens, and O. Kolle (2002), Spatial and temporal variability of land CO2 fluxes estimated with remote sensing and analysis data over western Eurasia, Tellus, Ser. B, 54, 820833.
  • Langmann, B. (2000), Numerical modelling of regional scale transport and photochemistry directly together with meteorological processes, Atmos. Environ., 34, 35853598.
  • Levin, I., et al. (2002), Three years of trace gas observations over the EuroSiberian domain derived from aircraft sampling - a concerted action, Tellus, Ser. B, 54, 696712.
  • Lloyd, J., et al. (2002a), A trace-gas climatology above Zotino, central Siberia, Tellus, Ser. B, 54, 749767.
  • Lloyd, J., O. Shibistova, D. Zolotoukhine, O. Kolle, A. Arneth, C. Wirth, J. M. Styles, N. M. Tchebakova, and E. D. Schulze (2002b), Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest, Tellus, Ser. B, 54, 590610.
  • Louis, J.-F. (1979), A parametric model of vertical eddy fluxes in the atmosphere, Boundary Layer Meteorol., 17, 187202.
  • Majewski, D. (1991), The Europamodell of the Deutscher Wetterdienst, Numer. Methods in Atmos. Models, vol. 2., pp. 147191, Eur. Cent. for Medium Range Weather Forecast., Reading, UK.
  • Mellor, B., and T. Yamada (1974), A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31, 17911806.
  • Moncrieff, J. (2003), Aberfeldy, The Euroflux dataset 2000, in: Fluxes of Carbon, Water and Energy of European Forests, edited by R. Valentini, 270 pp, Springer, New York.
  • Olivier, J. G. J., A. F. Bouwman, C. W. M. Van der Maas, J. J. M. Berdowski, C. Veldt, J. P. J. Bloos, A. J. H. Visschedijk, P. Y. J. Zandyelt, and J. L. Haverlag (1996), Description of EDGAR version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1 × 1 grid, RIVM/TNO Rep. 771060 002, Natl. Inst. for Public Health and the Environ., Bilthoven, Netherlands.
  • Prentice, I. C., G. D. Farquhar, M. J. R. Fasham, M. L. Goulden, M. Heimann, V. J. Jaramillo, H. S. Khehgi, C. Le Quéré, R. J. Scholes, and D. W. R. Wallace (2001), The carbon cycle and atmospheric carbon dioxide, in Climate Change 2001: The Scientific Basis, edited by J. T. Houghton et al., pp. 183237, Cambridge Univ. Press, New York.
  • Randerson, J. T., M. V. Thompson, T. J. Conway, I. Y. Fung, and C. B. Field (1997), The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide, Global Biogeochem. Cycles, 11, 535560.
  • Rebmann, C. (2003), Bayreuth, The Euroflux dataset 2000, in: Fluxes of Carbon, Water and Energy of European Forests, edited by R. Valentini, 270 pp, Springer, New York.
  • Rockel, B., and U. Karstens (2001), Development of the water budget for three extra-tropical cyclones with intense rainfall over Europe, Meteorol. Atmos. Phys., 77, 7583.
  • Rödenbeck, C., S. Houweling, M. Gloor, and M. Heimann (2003), CO2 Flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport, Atmos. Chem. Phys., 3, 19191964.
  • Ruimy, A., G. Dedieu, and B. Saugier (1996), TURC: A diagnostic model of continental gross primary productivity as net primary productivity, Global Biogeochem. Cycles, 10, 269285.
  • Smolarkiewicz, P. K. (1983), A simple positive definite advection scheme with small implicit diffusion, Mon. Weather Rev., 111, 479486.
  • Smolarkiewicz, P. K. (1984), A fully multidimensional positive definite advection algorithm with small implicit diffusion, J. Comput. Phys., 54, 325362.
  • Takahashi, T., R. H. Wanninkhof, R. A. Feely, R. F. Weiss, D. W. Chipman, N. Bates, J. Olafsson, C. Sabine, and S. C. Sutherland (1999), Net sea-air CO2 flux over the global oceans: An improved estimate based on the sea-air pCO2 difference, paper presented at 2nd CO2 in Oceans Symposium, Cent. for Global Environ. Res., Natl. Inst. for Environ. Stud., Tsukuba, Japan, 18 – 23 January .
  • Tans, P. P., I. Y. Fung, and T. Takahashi (1990), Observational constraints on the global atmospheric CO2 budget, Science, 247, 1431.
  • Thiébaux, H. J., and F. W. Zwiers (1984), The interpretation and estimation of effective sample size, J. Clim. Appl., 23,80023,811.
  • Tiedtke, M. (1989), A comprehensive mass flux scheme for cumulus parameterization in large scale models, Mon. Weather Rev., 117, 17791800.
  • Von Storch, H., and F. W. Zwiers (1999), Statistical Analysis in Climate Research, Cambridge Univ. Press, New York.
  • Wanninkhof, R. (1992), Relationship between wind speed and gas exchange, J. Geophys. Res., 97, 73737382.
  • Wofsy, S. C., and R. C. Harris (2002), The North American Carbon Program (NACP), report, NACP Comm. of the U.S. Interagency Carbon Cycle Sci. Progr., US Global Change Res. Progr., Washington, D. C.