SEARCH

SEARCH BY CITATION

References

  • Antonelli, P., H. E. Revercomb, L. A. Sromovsky, W. L. Smith, R. O. Knuteson, D. C. Tobin, R. K. Garcia, H. B. Howell, H.-L. Huang, and F. A. Best (2004), A principal component noise filter for high spectral resolution infrared measurements, J. Geophys. Res., 109, D23102, doi:10.1029/2004JD004862.
  • Aumann, H. H., et al. (2003), AIRS/AMSU/HSB on the Aqua Mission: Design, science objectives, data products, and processing systems, IEEE Trans. Geosci. Remote Sens., 41(2), 253264.
  • Barnes, W. L., T. S. Pagano, and V. V. Salomonson (1998), Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1, IEEE Trans. Geosci. Remote Sens., 36, 10881100.
  • Best, F. A., H. E. Revercomb, D. D. LaPorte, R. O. Knuteson, and W. L. Smith (1997), Accurately calibrated airborne and ground-based Fourier transform spectrometers II: HIS and AERI calibration techniques, traceability, and testing, paper presented at Council for Optical Radiation measurements (CORM), 1997 Annual Meeting, Natl. Inst. of Stand. and Technol., Gaithersburg, Md.
  • Best, F. A., H. E. Revercomb, R. O. Knuteson, D. C. Tobin, R. G. Dedecker, T. P. Dirkx, M. P. Mulligan, N. N. Ciganovich, and Y. Te (2003), Traceability of absolute radiometric calibration for the Atmospheric Emitted Radiance Interferometer (AERI), paper presented at Conference on Characterization and Radiometric Calibration for Remote Sensing, Space Dyn. Lab., Utah State Univ., Logan, 15 – 18 Sept.
  • Bower, N. (2001), Measurement of land surface emissivity and temperature in the thermal infrared using a ground-based interferometer, Ph.D. thesis, 171 pp., Curtin Univ. of Technol., Perth, West. Aust., Australia.
  • Capra, A., R. Cefalo, S. Gandolfi, G. Manzoni, I. E. Tabacco, and L. Vittuari (1994), Surface topography of Dome Concordia (Antarctica) from kinematic interferential GPS and bedrock topography, Ann. Glaciol., 30, 4246.
  • Clough, S. A., and M. J. Iacono (1995), Line-by-line calculations of atmospheric fluxes and cooling rates II: Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons, J. Geophys. Res., 100, 16,51916,535.
  • Clough, S. A., M. J. Iacono, and J.-L. Moncet (1992), Line-by-line calculation of atmospheric fluxes and cooling rates: Application to water vapor, J. Geophys. Res., 97, 15,76115,785.
  • Donlon, C. J., P. J. Minnett, C. Gentemann, T. J. Nightingale, I. J. Barton, B. Ward, and J. Murray (2002), Towards improved validation of satellite sea surface skin temperature measurements for climate research, J. Clim., 15, 353369.
  • Dozier, J., and S. G. Warren (1982), Effect of viewing angle on the infrared brightness temperature of snow, Water Resour. Res., 18, 14241434.
  • Fetzer, E., et al. (2003), AIRS/AMSU/HSB validation, IEEE Trans. Geosci. Remote Sens., 41, 418431.
  • Hudson, S. R., M. S. Town, V. P. Walden, and S. G. Warren (2004), Temperature, humidity, and pressure response of radiosondes at low temperatures, J. Atmos. Oceanic Technol., 21, 825836.
  • Knuteson, R. O., et al. (2004a), Atmospheric Emitted Radiance Interferometer. Part I: Instrument design, J. Atmos. Oceanic Technol., 21, 17631776.
  • Knuteson, R. O., et al. (2004b), Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance, J. Atmos. Oceanic Technol., 21, 17771789.
  • Maslanik, J. A., R. Stone, J. Pinto, J. Wendell, and C. Fowler (1999), Mobile-platform observations of surface energy budget parameters at the SHEBA site, paper presented at 5th Conference on Polar Meteorology and Oceanography, Am. Meteorol. Soc., Dallas, Tex.
  • Minnett, P. J., R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown (2001), The Marine-Atmosphere Emitted Radiance Interferometer (M-AERI), a high-accuracy, sea-going infrared spectroradiometer, J. Atmos.Oceanic Technol., 18, 9941013.
  • Olsen, E. T., H. Aumann, S. Broberg, S. Gaiser, and M. Kapoor (2005), AIRS/AMSU/HSB version 4.0 guide to selected AIRS QA fields, 5 pp., Jet Propul. Lab., Calif. Inst. of Technol., Pasadena.
  • Revercomb, H., H. Buijs, D. L. H. B. Howell, W. Smith, and L. Sromovsky (1988), Radiometric calibration of IR Fourier transform spectrometers: Solution to a problem with the high resolution interferometer sounder, Appl. Opt., 27, 32103218.
  • Schnell, R. C. (Ed.) (2004), Applications and results from STAR research, Clim. Monit. and Diagn. Lab. Summary Rep.27, section 3.2.6, 174 pp., NOAA, Boulder, Colo.
  • Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera (1988), A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 25022509.
  • Strow, L. L., H. E. Motteler, R. G. Benson, S. E. Hannon, and S. De Souza-Machado (1998), Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables, J. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 481493.
  • Tobin, D. C., et al. (2006), Radiometric and spectral validation of Atmospheric Infrared Sounder observations with the aircraft-based Scanning High-Resolution Interferometer Sounder, J. Geophys. Res., 111, D09S02, doi:10.1029/2005JD006094.
  • Town, M. S., V. P. Walden, and S. G. Warren (2005), Spectral and broadband longwave downwelling radiative fluxes, cloud-radiative forcing, and fractional cloud cover over the South Pole, J. Clim., 18, 42354252.
  • Turner, D. D. (2005), Arctic mixed-phase cloud properties from AERI-lidar observations: Algorithm and results from SHEBA, J. Appl. Meteorol., 44, 427444.
  • Walden, V. P., S. G. Warren, and F. J. Murcray (1998), Measurements of downward longwave radiation spectrum over the Antarctic Plateau and comparisons with a line-by-line radiative transfer model for clear skies, J. Geophys. Res., 103, 38253846.
  • Walden, V. P., M. S. Town, B. Halter, and J. W. V. Storey (2005), First measurements of the infrared sky brightness at Dome C, Antarctica, Proc. Pac. Astron. Soc., 117, 300308.