SEARCH

SEARCH BY CITATION

References

  • Ackerman, T. P., and G. M. Stokes (2003), The Atmospheric Radiation Measurement Program, Phys. Today, 58, 3844.
  • Asai, T. (1970), Three-dimensional features of thermal convection in a plane Couette flow, J. Meteorol. Soc. Jpn., 48, 1829.
  • Atlas, D., B. Walter, S.-H. Chou, and P. J. Sheu (1986), The structure of the unstable marine boundary layer viewed by lidar and aircraft observations, J. Atmos. Sci., 43, 13011318.
  • Boers, R., E. W. Eloranta, and R. L. Coulter (1984), Lidar observations of mixed layer dynamics: Tests of parameterized entrainment models of mixed layer growth, J. Clim. Appl. Meteorol., 23, 247266.
  • Brown, R. A. (1970), A secondary flow model for the planetary boundary layer, J. Atmos. Sci., 27, 742757.
  • Caughey, S. J., and S. J. Palmer (1979), Some aspects of turbulence structure through the depth of the convective boundary layer, Q. J. R. Meteorol. Soc., 105, 811827.
  • Christian, T. W., and R. M. Wakimoto (1989), The relationship between radar reflectivities and clouds associated with horizontal roll convection on 8 August 1982, Mon. Weather Rev., 117, 15301544.
  • Cooper, D. L., W. E. Eichinger, S. Barr, W. Cottingame, M. V. Hynes, C. F. Keller, C. F. Lebeda, and D. A. Poling (1996), High-resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations, J. Atmos. Sci., 53, 20542075.
  • Etling, D., and R. A. Brown (1993), Roll vortices in the planetary boundary layer: A review, Boundary Layer Meteorol., 65, 215248.
  • Feltz, W. F., and J. R. Mecikalski (2002), Monitoring high-temporal resolution stability using the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the 3 May 1999 Oklahoma/Kansas tornado outbreak, Weather Forecasting, 17, 445455.
  • Feltz, W. F., W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howel (1998), Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI), J. Appl. Meteorol., 37, 857875.
  • Feltz, W. F., H. B. Howell, R. O. Knuteson, H. M. Woolf, and H. E. Revercomb (2003), Near continuous profiling of temperature, moisture, and atmospheric stability using the Atmospheric Emitted Radiance Interferometer (AERI), J. Appl. Meteorol., 42, 584597.
  • Glendening, J. W. (1996), Lineal eddy features under strong shear conditions, J. Atmos. Sci., 53, 34303449.
  • Goldsmith, J. E. M., F. H. Blair, S. E. Bisson, and D. D. Turner (1998), Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols, Appl. Opt., 37, 49794990.
  • Hagelberg, C. R., D. I. Cooper, C. L. Winter, and W. E. Eichinger (1998), Scale properties of microscale convection in the marine surface layer, J. Geophys. Res., 103(D14), 16,89716,907.
  • Hauf, T. (1993), Aircraft observation of convection waves over southern Germany—A case study, Mon. Weather Rev., 121, 32823290.
  • Kiemle, C., M. Kastner, and G. Ehret (1995), The convective boundary layer structure from lidar and radiosonde measurements during the EFEDA '91 campaign, J. Atmos. Oceanic Technol., 12, 771782.
  • Kingsmill, D. E. (1995), Convective initiation associated with a sea-breeze front, a gust front, and their collision, Mon. Weather Rev., 123, 29132933.
  • Knuteson, R. O., et al. (2004), Atmospheric Emitted Radiance Interferometer: Part II Instrument performance, J. Atmos. Oceanic Techmol., 21, 17771789.
  • Konrad, T. G. (1968), The alignment of clear air convective cells, paper presented at International Conference on Cloud Physics, Int. Comm. on Cloud Phys., Toronto, Ont., Canada.
  • Kuettner, J. P. (1959), The band structure of the atmosphere, Tellus, 2, 267294.
  • Kuettner, J. P. (1971), Cloud bands in the Earth's atmosphere: Observations and theory, Tellus, 11, 404425.
  • Kuettner, J. P., P. A. Hildebrand, and T. L. Clark (1987), Convection waves: Observations of gravity wave systems over convectively active boundary layers, Q. J. R. Meteorol. Soc, 113, 445467.
  • Kunkel, K. E., E. W. Eloranta, and S. T. Shipley (1977), Lidar observations of the convective boundary layer, J. Appl. Meteorol., 12, 13061311.
  • Laird, N. F., D. A. R. Kristovich, R. M. Rauber, H. T. Ochs III, and L. J. Miller (1995), The Cape Canaveral sea and river breezes: Kinematic structure and convective initiation, Mon. Weather Rev., 123, 29422956.
  • LeMone, M. A. (1973), The structure and dynamics of horizontal roll vortices in the planetary boundary layer, J. Atmos. Sci., 30, 10771091.
  • LeMone, M. A. (1976), Modulation of turbulent energy by longitudinal rolls in an unstable boundary layer, J. Atmos. Sci., 33, 13081320.
  • Lonnqvist, J. (1995), Experiences with a novel single-lens cloud height lidar, paper presented at Ninth Symposium on Meteorological Observations and Instrumentation, 27–31 March 1995, Am. Meteorol. Soc., Charlotte, N. C.
  • Mahrt, L. (1979), Penetrative convection at the top of a growing boundary layer, Q. J. R. Meteorol. Soc., 105, 469485.
  • Mahrt, L., J. I. MacPherson, and R. Desjardins (1994), Observations of fluxes over heterogeneous surfaces, Boundary Layer Meteorol., 67, 345367.
  • Mayor, S. D., P. R. Spalart, and G. J. Tripoli (2003), Evaluating large eddy simulations using volume imaging lidar data, Mon. Weather Rev., 131, 14281453.
  • Melfi, S. H., J. D. Spinhirne, S.-H. Chou, and S. P. Palm (1985), Lidar observations of vertically organized convection in the planetary boundary layer over the ocean, J. Clim. Appl. Meteorol., 24, 806821.
  • Moeng, C.-H., and P. P. Sullivan (1994), A comparison of shear- and buoyancy-driven planetary boundary layer flows, J. Atmos. Sci., 51, 9991022.
  • Orlanski, I. (1975), A rational subdivision of atmospheric processes, Bull. Am. Meteorol. Soc., 56, 527530.
  • Panofsky, H. A., and G. W. Brier (1968), Some Applications of Statistics to Meteorology, 224 pp., Penn. State Univ., University Park.
  • Plank, V. G. (1966), Wind conditions in situations of patternform and nonpatternform cumulus convection, Tellus, 18, 112.
  • Rabin, R. M., S. J. Stadler, P. Wetzel, D. J. Stendrud, and M. Gregory (1990), Observed effects of landscape variability on convective clouds, Bull. Am. Meteorol. Soc., 71, 272280.
  • Reinking, R. F., R. J. Doviak, and R. O. Gilmer (1981), Clear-air roll vortices and turbulent motions as detected with an airborne gust probe and dual-Doppler radar, J. Appl. Meteorol., 20, 678685.
  • Revercomb, H. E., et al. (2003), The Atmospheric Radiation Measurement Program's water vapor intensive observation periods: Overview, initial accomplishments, and future challenges, Bull. Am. Meteorol. Soc., 84, 217236.
  • Senff, C., J. Bosenberg, and G. Peters (1994), Measurements of water vapor flux profiles in the convective boundary layer with lidar and radar-RASS, J. Atmos. Ocean Tech., 11, 8593.
  • Smith, W. L., et al. (1990), GAPEX: A Ground-based Atmospheric Profiling Experiment, Bull. Am. Meteorol. Soc., 71, 310318.
  • Smith, W. L., W. F. Feltz, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell (1999), The retrieval of planetary boundary layer structure using ground-based infrared spectral radiance measurements, J. Atmos. Oceanic Technol., 16, 323333.
  • Stull, R. B. (1988), An Introduction to Boundary Layer Meteorology, 666 pp., Springer, New York.
  • Turner, D. D., and J. E. M. Goldsmith (1999), Twenty-four-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program's 1996 and 1997 water vapor intensive observation periods, J. Atmos.Oceanic Technol., 16, 10621076.
  • Turner, D. D., and D. N. Whiteman (2002), Remote Raman spectroscopy: Profiling water vapor and aerosols in the troposphere using Raman lidars, in Handbook of Vibrational Spectroscopy, edited by J. M. Chalmers, and P. R. Griffiths, John Wiley, Hoboken, N. J.
  • Turner, D. D., W. F. Feltz, and R. A. Ferrare (2000), Continuous water vapor profiles from operational ground-based active and passive remote sensors, Bull. Am. Meteorol. Soc., 81, 13011317.
  • Turner, D. D., R. O. Knuteson, H. E. Revercomb, C. Lo, and R. G. Dedecker (2006), Noise reduction of Atmospheric Emitted Radiance Interferometer (AERI) observations using principal component analysis, J. Atmos. Oceanic Technol., in press.
  • Tuttle, J. D., C. K. Mueller, and S. K. Krueger (1992), The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study, Mon. Weather Rev., 120, 17851815.
  • Weckwerth, T. M. (2000), The effect of small-scale moisture variability on thunderstorm initiation, Mon. Weather Rev., 128, 40174030.
  • Weckwerth, T. M., and R. M. Wakimoto (1992), The initiation and organization of convective cells atop a cold-air outflow boundary, Mon. Weather Rev., 120, 21692187.
  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto (1996), Thermodynamic variability within the boundary layer due to horizontal convective rolls, Mon. Weather Rev., 124, 769784.
  • Weckwerth, T. M., C. J. Grund, and S. D. Mayor (1997a), Linearly-organized coherent structures in the surface layer. Preprints, paper presented at 12th Symposium on Boundary Layers and Turbulence, Am. Meteorol. Soc., Vancouver, B. C., Canada.
  • Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Crook (1997b), Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics, Mon. Weather Rev., 125, 505526.
  • Weckwerth, T. M., T. W. Horst, and J. W. Wilson (1999), An observational study of the evolution of horizontal convective rolls, Mon. Weather. Rev., 127, 21602179.
  • Weckwerth, T. M., D. B. Parsons, S. E. Koch, J. A. Moore, M. A. LeMone, B. B. Demoz, C. Flamant, B. Geerts, J. Wang, and W. F. Feltz (2004), An overview of the International H2O Project (IHOP_2002) and some preliminary highlights, Bull. Am. Meteorol. Soc., 85, 253277.
  • Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, C. K. Mueller, and S. K. Krueger (1992), The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms, Mon. Weather Rev., 120, 17851815.
  • Young, G. S. (1988a), Turbulence structure of the convective boundary layer. Part I: Variability of normalized turbulence statistics, J. Atmos. Sci., 45, 719726.
  • Young, G. S. (1988b), Turbulence structure of the convective boundary layer. Part II: Phoenix 78 aircraft observations of thermals and their environment, J. Atmos. Sci., 45, 727735.
  • Young, G. S. (1988c), Turbulence structure of the convective boundary layer. Part III: The vertical velocity budgets of thermals and their environment, J. Atmos. Sci., 45, 20392049.
  • Ziegler, C. L., and E. N. Rasmussen (1998), The initiation of moist convection at the dryline: Forecasting issues from a case study perspective, Weather Forecasting, 13, 11061131.