SEARCH

SEARCH BY CITATION

References

  • Abdella, K., and N. A. McFarlane (1996), Parameterization of the surface-layer exchange coefficients for atmospheric models, Boundary Layer Meteorol., 80, 223248.
  • Akmaev, R. A., and V. I. Fomichev (2000), A model estimate of cooling in the mesosphere and lower thermosphere due to the CO2 increase over the last 3–4 decades, Geophys. Res. Lett., 27, 21132116.
  • Al-Saadi, J. A., R. B. Pierce, M. Natarajan, T. D. Fairlie, and W. L. Grose (2004), Chemical climatology of the middle atmosphere simulated by the NASA Langley Research Center Interactive Modeling Project for Atmospheric Chemistry and Transport (IMPACT) model, J. Geophys. Res., 109, D17301, doi:10.1029/2003JD004354.
  • Andrews, D. G., J. R. Holton, and C. B. Leovy (1987), Middle Atmosphere Dynamics, 302 pp., Elsevier, New York.
  • Austin, J., et al. (2003), Uncertainties and assessments of chemistry-climate models of the stratosphere, Atmos. Chem. Phys., 3, 127.
  • Beagley, S. R., J. de Grandpré, J. N. Koshyk, N. A. McFarlane, and T. G. Shepherd (1997), Radiative-dynamical climatology of the first-generation Canadian Middle Atmosphere Model, Atmos. Ocean, 35, 293331.
  • Boer, G. J. (1995), A hybrid moisture variable suitable for spectral GCMs, Res. Activ. Atmos. Oceanic Modell. Rep. 21, WMO/TD 665, World Meteorol. Organ., Geneva.
  • Boer, G. J., and B. Yu (2003), Climate sensitivity and response, Clim. Dyn., 20, 415429.
  • Bohren, D. G., and B. A. Albrecht (1998), Atmospheric Thermodynamics, 199 pp., Oxford Univ. Press, New York.
  • Boville, B. A., J. T. Kiehl, P. J. Rasch, and F. O. Bryan (2001), Improvements to the NCAR CSM-1 for transient climate simulations, J. Clim., 14, 164179.
  • Brewer, A. W. (1949), Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere, Q. J. R. Meteorol. Soc., 75, 351363.
  • Cariolle, D., and M. Deque (1986), Southern-Hemisphere medium-scale waves and total ozone disturbances in a spectral general-circulation model, J. Geophys. Res., 91, 825846.
  • Chýlek, P., P. Damiano, and E. P. Shettle (1992), Infrared emittance of water clouds, J. Atmos. Sci., 49, 14591472.
  • de Grandpré, J., J. W. Sandilands, J. C. McConnell, S. R. Beagley, P. C. Croteau, and M. Y. Danilin (1997), Canadian Middle Atmosphere Model: Preliminary results from the chemical transport module, Atmos. Ocean, 35, 385431.
  • de Grandpré, J., S. R. Beagley, V. I. Fomichev, E. Griffioen, J. C. McConnell, A. S. Medvedev, and T. G. Shepherd (2000), Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model, J. Geophys. Res., 105, 26,47526,491.
  • Dobson, G. M. B. (1956), Origin and distribution of the polyatomic molecules in the atmosphere, Proc. R. Soc. London, Ser. A, 236, 187193.
  • Ehhalt, D., et al. (2001), Atmospheric chemistry and greenhouse gases, in Climate Change 2001: The Scientific Basis, edited by J. T. Houghton et al., pp. 239287, Cambridge Univ. Press, New York.
  • Fels, S. B. (1982), A parameterization of scale-dependent radiative damping rates in the middle atmosphere, J. Atmos. Sci., 39, 11411152.
  • Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair (1980), Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response, J. Atmos. Sci., 37, 22652297.
  • Fomichev, V. I., W. E. Ward, S. R. Beagley, C. McLandress, J. C. McConnell, N. A. McFarlane, and T. G. Shepherd (2002), The extended Canadian Middle Atmosphere Model: Zonal-mean climatology and physical parameterizations, J. Geophys. Res., 107(D10), 4087, doi:10.1029/2001JD000479.
  • Forster, P. M. D., and M. Joshi (2005), The role of halocarbons in the climate change of the troposphere and stratosphere, Clim. Change, 71, 249266, doi:10.1007/s10584-005-5955-7.
  • Forster, P. M. D., and K. P. Shine (1999), Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling, Geophys. Res. Lett., 26, 33093312.
  • Forster, P. M. D., and K. P. Shine (2002), Assessing the climate impact of trends in stratospheric water vapor, Geophys. Res. Lett., 29(6), 1086, doi:10.1029/2001GL013909.
  • Forster, P. M. D., R. S. Freckleton, and K. P. Shine (1997), On aspects of the concept of radiative forcing, Clim. Dyn., 13, 547560.
  • Freckleton, R. S., E. J. Highwood, K. P. Shine, O. Wild, K. S. Law, and M. G. Sanderson (1998), Greenhouse gas radiative forcing: Effects of averaging and inhomogeneities in trace gas distribution, Q. J. R. Meteorol. Soc., 124, 20992127.
  • Fueglistaler, S., M. Bonazzola, P. H. Hanes, and T. Peter (2005), Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics, J. Geophys. Res., 110, D08107, doi:10.1029/2004JD005516.
  • Govindasamy, B., K. E. Taylor, P. B. Duffy, B. D. Santer, A. S. Grossman, and K. E. Grant (2001), Limitations of the equivalent CO2 approximation in climate change simulations, J. Geophys. Res., 106, 22,59322,603.
  • Gurney, K. R., et al. (2002), Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models, Nature, 415, 626630.
  • Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, J. Geophys. Res., 102, 68316864.
  • Hauglustaine, D. A., C. Granier, G. P. Brasseur, and G. Mégie (1994), The importance of atmospheric chemistry in the calculation of radiative forcing on the climate system, J. Geophys. Res., 99, 11731186.
  • Holton, J. R. (1986), A dynamically based transport parameterization for one-dimensional photochemical models of the stratosphere, J. Geophys. Res., 91, 26812686.
  • Holzer, M. (1996), Optimal spectral topography and its effect on model climate, J. Clim., 9, 24432463.
  • Holzer, M. (1999), Analysis of passive tracer transport as modeled by an atmospheric general circulation model, J. Clim., 12, 16591684.
  • Holzer, M., and G. J. Boer (2001), Simulated changes in atmospheric transport climate, J. Clim., 14, 43984420.
  • Le Texier, H., S. Solomon, and R. Garcia (1988), The role of molecular hydrogen in the water vapour budget of the stratosphere, Q. J. R. Meteorol. Soc., 111, 281295.
  • Livezey, R. E., and W. Y. Chen (1983), Statistical field significance and its determination by Monte-Carlo techniques, Mon. Weather Rev., 111, 4659.
  • MacKenzie, I. A., and R. S. Harwood (2004), Middle-atmospheric response to a future increase in humidity arising from increased methane abundance, J. Geophys. Res., 109, D02107, doi:10.1029/2003JD003590.
  • Manabe, S., and R. T. Wetherald (1975), The effects of doubling the CO2 concentration on the climate of a general circulation model, J. Atmos. Sci., 37, 315.
  • McFarlane, N. A., G. J. Boer, J.-P. Blanchet, and M. Lazare (1992), The Canadian Climate Centre second-generation general circulation model and its equilibrium climate, J. Clim., 5, 10131044.
  • Merryfield, W. J., N. McFarlane, and M. Lazare (2003), A generalized hybrid transformation for tracer advection, in WGNE Blue Book, pp. 03-1303-14, World Meteorol. Organ., Geneva, Switzerland.
  • Minschwaner, K., R. W. Carver, B. P. Briegleb, and A. E. Roche (1998), Infrared radiative forcing and atmospheric lifetimes of trace species based on observations from UARS, J. Geophys. Res., 103, 23,24323,253.
  • Morcrette, J.-J. (1991), Radiation and cloud radiative properties in the ECMWF operational weather forecast model, J. Geophys. Res., 96, 91219132.
  • Mote, P. W., et al. (1996), An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor, J. Geophys. Res., 101, 39894006.
  • Nightingale, R. W., et al. (1996), Global CF2Cl2 measurements by UARS cryogenic limb array etalon spectrometer: Validation by correlative data and a model, J. Geophys. Res., 101, 97119736.
  • Oinas, V., A. A. Lacis, D. Rind, D. T. Shindell, and J. E. Hansen (2001), Radiative cooling by stratospheric water vapor: Big differences in GCM results, Geophys. Res. Lett., 28, 27912794.
  • Ramanathan, V., E. J. Pitcher, R. C. Malone, and M. L. Blackmon (1983), The response of a spectral general circulation model to refinements in radiative processes, J. Atmos. Sci., 40, 605630.
  • Ramanathan, V., R. J. Cicerone, H. B. Singh, and J. T. Kiehl (1985), Trace gas trends and their potential role in climate change, J. Geophys. Res., 90, 55475566.
  • Ramanathan, V., et al. (1987), Climate-chemical interactions and effects of changing atmospheric trace gases, Rev. Geophys., 25, 14411482.
  • Ramaswamy, V., et al. (2001), Radiative forcing of climate change, in Climate Change 2001: The Scientific Basis, edited by J. T. Houghton et al., pp. 348416, Cambridge Univ. Press, New York.
  • Randel, W. J., F. Wu, J. M. Russell, A. Roche, and J. W. Waters (1998), Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data, J. Atmos. Sci., 55, 163185.
  • Randel, W. J., F. Wu, A. Gettelman, J. M. Russell III, J. M. Zawodny, and S. J. Oltmans (2001), Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data, J. Geophys. Res., 106, 14,31314,325.
  • Rind, D., and P. Lonergan (1995), Modeled impacts of stratospheric ozone and water-vapor perturbations with implications for high-speed civil transport aircraft, J. Geophys. Res., 100, 73817396.
  • Roche, A. E., R. W. Nightingale, J. B. Kumer, J. L. Mergenthaler, C. H. Jackman, and E. L. Fleming (1998), Distribution and seasonal variation of CFCs in the stratosphere: Comparison of satellite global data and a 2-D model, Adv. Space Res., 21, 13831391.
  • Rosenlof, K. H. (1995), Seasonal cycle of the residual mean meridional circulation in the stratosphere, J. Geophys. Res., 100, 51735191.
  • Rosenlof, K. H. (2002), Transport changes inferred from HALOE water and methane measurements, J. Meteorol. Soc. Jpn., 80, 831848.
  • Rosenlof, K. H., A. F. Tuck, K. K. Kelly, J. M. Russell III, and M. P. McCormick (1997), Hemispheric asymmetries in water vapor and inferences about transport in the lower stratosphere, J. Geophys. Res., 102, 13,21313,234.
  • Salby, M. L. (1996), Fundamentals of Atmospheric Physics, 246 pp., Elsevier, New York.
  • Schwarzkopf, M. D., and V. Ramaswamy (1999), Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: A GCM experiment, J. Geophys. Res., 104, 94679488.
  • Scinocca, J. F. (2003), An accurate spectral nonorographic gravity wave drag parameterization for general circulation models, J. Atmos. Sci., 60, 667682.
  • Scinocca, J. F., and N. A. McFarlane (2000), The parameterization of drag induced by stratified flow over anisotropic orography, Q. J. R. Meteorol. Soc., 126, 23532393.
  • Sigmond, M., P. C. Siegmund, E. Manzini, and H. Kelder (2004), A simulation of the separate climate effects of middle-atmospheric and tropospheric CO2 doubling, J. Clim., 17, 23522367.
  • Slingo, A. (1989), A GCM parameterization for the shortwave radiative properties of water clouds, J. Atmos. Sci., 46, 14191427.
  • Steil, B., C. Bruhl, E. Manzini, P. J. Crutzen, J. Lelieveld, P. J. Rasch, E. Roeckner, and K. Krüger (2003), A new interactive chemistry-climate model: 1. Present-day climatology and interannual variability of the middle atmosphere using the model and 9 years of HALOE/UARS data, J. Geophys. Res., 108(D9), 4290, doi:10.1029/2002JD002971.
  • Verseghy, D. L., N. A. McFarlane, and M. Lazare (1993), CLASS: A Canadian Land Surface Scheme for GCMs: II. Vegetation model and coupled runs, Int. J. Climatol., 13, 347370.
  • von Storch, H., and F. W. Zwiers (1999), Statistical Analysis in Climate Research, 484 pp., Cambridge Univ. Press, New York.
  • Wang, W.-C., M. P. Dudek, X.-Z. Liang, and J. T. Kiehl (1991), Inadequacy of effective CO2 in simulating the greenhouse effect of other radiatively active gases, Nature, 350, 573577.
  • Wang, W.-C., M. P. Dudek, and X.-Z. Liang (1992), Inadequacy of effective CO2 as a proxy in assessing the regional climate change due to other radiatively active gases, Geophys. Res. Lett., 19, 13751378.
  • World Meteorological Organization (1983), Radiation Commission of IAMAP Meeting of Experts on Aerosol and Their Climatic Effects, WCP 55, Geneva.
  • Zhang, G. J., and N. A. McFarlane (1995), Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general-circulation model, Atmos. Ocean, 33, 407446.
  • Zhong, W., and J. D. Haigh (1995), Improved broadband emissivity parameterization for water vapor cooling rate calculations, J. Atmos. Sci., 52, 124138.
  • Zhong, W., J. D. Haigh, and J. A. Pyle (1993), Greenhouse gases in the stratosphere, J. Geophys. Res., 98, 29953004.
  • Zwiers, F. W. (1990), The effect of serial correlation on statistical inferences made with resampling procedures, J. Clim., 3, 14521461.