SEARCH

SEARCH BY CITATION

References

  • Andres, R. J., G. Marland, I. Fung, and E. Matthews (1996), A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990, Global Biogeochem. Cycles, 10, 419429.
  • Aumann, H. H., et al. (2003), AIRS/AMSU/HSB on the Aqua mission: Design, science, objectives, data products and processing systems, IEEE Trans. Geosci. Remote Sens., 41, 253264.
  • Aumann, H. H., D. Gregorich, and S. Gaiser (2005), AIRS hyper-spectral measurements for climate research: Carbon dioxide and nitrous oxide effects, Geophys. Res. Lett., 32, L12802, doi:10.1029/2005GL022564.
  • Bakwin, P. S., P. P. Tans, C. Zhao, W. Ussler, and E. Quesnell (1995), Measurements of carbon dioxide on very tall tower, Tellus, Ser. B, 47, 535549.
  • Boering, K. A., S. C. Wofsy, B. C. Daube, H. R. Schneider, M. Loewenstein, J. R. Podolske, and T. J. Conway (1996), Stratospheric mean ages and transport rates from observations of carbon dioxide and nitrous oxide, Science, 274, 13401343.
  • Bousquet, P., P. Peylin, P. Ciais, C. Le Quere, P. Friedlingstein, and P. P. Tans (2000), Regional changes in carbon dioxide fluxes of land and oceans since 1980, Science, 290, 13421346.
  • Bousquet, P., D. A. Hauglustaine, P. Peylin, C. Carouge, and P. Ciais (2005), Two decades of OH variability as infrared by an inversion of atmospheric transport and chemistry of methyl chloroform, Atmos. Chem. Phys. Disc., 5, 16791737.
  • Chedin, A., S. Serrar, R. Armante, N. A. Scott, and A. Hollingsworth (2002), Signatures of annual and seasonal variations of CO2 and other greenhouse gases from NOAA/TOVS observations and model simulations, J. Clim., 15, 95116.
  • Chedin, A., S. Serrar, N. A. Scott, C. Crevoisier, and R. Armante (2003), First global measurement of midtropospheric CO2 from NOAA polar satellite, tropical zone, J. Geophys. Res., 108(D18), 4581, doi:10.1029/2003JD003439.
  • Chevallier, F., R. J. Engelen, and P. Peylin (2005), The contribution of AIRS data to the estimation of CO2 sources and sinks, Geophys. Res. Lett., 32, L23801, doi:10.1029/2005GL024229.
  • Conway, T., P. P. Tans, L. S. Waterman, K. W. Thoning, D. Kitzis, K. Masarie, and N. Zhang (1994), Evidence for interannual variability of the carbon cycle from the national oceanic and atmospheric administration climate monitoring and diagnostics laboratory global air sampling network, J. Geophys. Res., 99, 22,83122,855.
  • Crevoisier, C., A. Chedin, and N. A. Scott (2003), AIRS channel selection for CO2 and other trace gas retrievals, Q. J. R. Meteorol. Soc., 129, 27192740.
  • Crevoisier, C., S. Heilliette, A. Chédin, S. Serrar, R. Armante, and N. A. Scott (2004), Midtropospheric CO2 concentration retrieval from AIRS observations in the tropics, Geophys. Res. Lett., 31, L17106, doi:10.1029/2004GL020141.
  • Engelen, R. J., and A. P. McNally (2005), Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: Results and validation, J. Geophys. Res., 110, D18305, doi:10.1029/2005JD005982.
  • Engelen, R. J., E. Andersson, F. Chevallier, and A. Hollingsworth (2004), Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: Methodology and first results, J. Geophys. Res., 109, D19309, doi:10.1029/2004JD004777.
  • Enting, I. G., C. M. Trudinger, and R. J. Francey (1995), A synthesis inversion of the concentration and δC13 of atmospheric CO2, Tellus, Ser. B, 47, 3552.
  • Gloor, M., S.-M. Fan, S. W. Pacala, J. L. Sarmiento, and M. Ramonet (1999), A model-based evaluation of inversions of atmospheric transport, using annual mean mixing ratios, as a tool to monitor fluxes of nonreactive trace substances like CO2 on a continental scale, J. Geophys. Res., 104, 14,24514,260.
  • Gloor, M., S.-M. Fan, S. Pacala, and J. L. Sarmiento (2000), Optimal sampling of the atmosphere for purpose of inverse modeling: A model study, Global Biogeochem. Cycles, 14, 407428.
  • Gurney, K. R., et al. (2002), Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models, Nature, 415, 626630.
  • Heimann, M., and S. Körner (2003), The Global Atmospheric Tracer Model TM3: Model Description and User's Manual Release 3.8a, Max-Planck Inst. for Biogeochem., Jena, Germany.
  • Hourdin, F., and A. Armengaud (1999), Test of a hierarchy of finite-volume schemes for transport of trace species in an atmospheric general circulation model, Mon. Weather Rev., 127, 822837.
  • Houweling, S., F.-M. Breon, I. Aben, C. Rödenbeck, M. Gloor, M. Heimann, and P. Ciais (2004), Inverse modeling of CO2 sources and sinks using satellite data: A synthetic inter-comparison of measurement techniques and their performance as a function of space and time, Atmos. Chem. Phys., 4, 523538.
  • Indermühle, A., B. Stauffer, and T. F. Stocker (1999), Early Holocene atmospheric CO2 concentrations, Science, 286, 1815.
  • Intergovernmental Panel on Climate Change (2001), Climate Change 2001: The Scientific Basis, edited by J. T. Houghton et al., Cambridge Univ. Press, New York.
  • Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437471.
  • Keeling, C. D., S. C. Piper, and M. Heimann (1989), A three dimensional model of atmospheric CO2 transport based on observed winds: 4, Mean annual gradients and interannual variations, in Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr. Ser., vol. 55, edited by D. H. Peterson, pp. 305363, AGU, Washington, D. C.
  • Laval, K., R. Sadourny, and Y. Serafini (1981), Land surface processes in a simplified general circulation model, Geophys. Astrophys. Fluid Dyn., 17, 129150.
  • Louis, J. F. (1979), A parametric model of vertical eddy fluxes in the atmosphere, Boundary Layer Meteorol., 17, 187202.
  • Mahlman, J. D. (1997), Dynamics of transport processes in the upper troposphere, Science, 276, 10791083.
  • Marland, G., R. M. Rotty, and N. L. Treat (1985), CO2 from fossil fuel burning: Global distributions of emissions, Tellus, Ser. B, 37, 243258.
  • McNally, A. P., and P. D. Watts (2003), A cloud detection algorithm for high-spectral-resolution infrared sounders, Q. J. R. Meteorol. Soc., 129, 34113423.
  • Rayner, P. J., and D. M. O'Brien (2001), The utility of remotely sensed CO2 concentration data in surface source inversions, Geophys. Res. Lett., 28, 175178.
  • Rayner, P., I. Enting, R. Francey, and R. Langenfelds (1999), Reconstructing the recent carbon cycle from atmospheric CO2, δCO2 and O2/N2 observations, Tellus, Ser. B, 51, 213232.
  • Reichler, T., M. Dameris, and R. Sausen (2003), Determining the tropopause height from gridded data, Geophys. Res. Lett., 30(20), 2042, doi:10.1029/2003GL018240.
  • Rödenbeck, C. (2005), Estimating CO2 Sources and Sinks From Atmospheric Mixing Ratio Measurements Using a Global Inversion of Atmospheric Transport, Tech. Rep. 6, Max-Planck Inst. for Biogeochem., Jena, Germany.
  • Rödenbeck, C., S. Houweling, M. Gloor, and M. Heimann (2003), CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric tracer transport, Atmos. Chem. Phys., 3, 19191964.
  • Russell, G., and J. Lerner (1981), A new finite-differencing scheme for the tracer transport equation, J. Appl. Meteorol., 20, 14831498.
  • Sabine, C. L., et al. (2004), The oceanic sink for anthropogenic CO2, Science, 305, 367371.
  • Sadourny, R., and K. Laval (1984), January and July performance of the LMD general circulation model, in New Perspectives in Climate Modeling, edited by A. Berger, and C. Nicolis, pp. 173198, Elsevier, New York.
  • Tans, P. P., I. Y. Fung, and T. Takahashi (1990), Observational constraints on the global atmospheric CO2 budget, Science, 247, 14311438.
  • Tiedtke, M. (1989), A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Weather Rev., 117, 11791800.